Détail de l'auteur
Auteur Jon Osborn |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A comparison of ALS and dense photogrammetric point clouds for individual tree detection in radiata pine plantations / Irfan A. Iqbal in Remote sensing, vol 13 n° 17 (September-1 2021)
[article]
Titre : A comparison of ALS and dense photogrammetric point clouds for individual tree detection in radiata pine plantations Type de document : Article/Communication Auteurs : Irfan A. Iqbal, Auteur ; Jon Osborn, Auteur ; Christine Stone, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 3536 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] arbre isolé
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] photogrammétrie aérienne
[Termes IGN] Pinus radiata
[Termes IGN] semis de points
[Termes IGN] TasmanieRésumé : (auteur) Digital aerial photogrammetry (DAP) has emerged as a potentially cost-effective alternative to airborne laser scanning (ALS) for forest inventory methods that employ point cloud data. Forest inventory derived from DAP using area-based methods has been shown to achieve accuracy similar to that of ALS data. At the tree level, individual tree detection (ITD) algorithms have been developed to detect and/or delineate individual trees either from ALS point cloud data or from ALS- or DAP-based canopy height models. An examination of the application of ITDs to DAP-based point clouds has not yet been reported. In this research, we evaluate the suitability of DAP-based point clouds for individual tree detection in the Pinus radiata plantation. Two ITD algorithms designed to work with point cloud data are applied to dense point clouds generated from small- and medium-format photography and to an ALS point cloud. Performance of the two ITD algorithms, the influence of stand structure on tree detection rates, and the relationship between tree detection rates and canopy structural metrics are investigated. Overall, we show that there is a good agreement between ALS- and DAP-based ITD results (proportion of false negatives for ALS, SFP, and MFP was always lower than 29.6%, 25.3%, and 28.6%, respectively, whereas, the proportion of false positives for ALS, SFP, and MFP was always lower than 39.4%, 30.7%, and 33.7%, respectively). Differences between small- and medium-format DAP results were minor (for SFP and MFP, differences between recall, precision, and F-score were always less than 0.08, 0.03, and 0.05, respectively), suggesting that DAP point cloud data is robust for ITD. Our results show that among all the canopy structural metrics, the number of trees per hectare has the greatest influence on the tree detection rates. Numéro de notice : A2021-689 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13173536 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.3390/rs13173536 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98425
in Remote sensing > vol 13 n° 17 (September-1 2021) . - n° 3536[article]