Détail de l'auteur
Auteur Masakazu Hashimoto |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Disaster intensity-based selection of training samples for remote sensing building damage classification / Luis Moya in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
[article]
Titre : Disaster intensity-based selection of training samples for remote sensing building damage classification Type de document : Article/Communication Auteurs : Luis Moya, Auteur ; Christian Geiss, Auteur ; Masakazu Hashimoto, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8288 - 8304 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] déformation d'édifice
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] dommage matériel
[Termes IGN] données de terrain
[Termes IGN] échantillonnage de données
[Termes IGN] image optique
[Termes IGN] inondation
[Termes IGN] séismeRésumé : (auteur) Previous applications of machine learning in remote sensing for the identification of damaged buildings in the aftermath of a large-scale disaster have been successful. However, standard methods do not consider the complexity and costs of compiling a training data set after a large-scale disaster. In this article, we study disaster events in which the intensity can be modeled via numerical simulation and/or instrumentation. For such cases, two fully automatic procedures for the detection of severely damaged buildings are introduced. The fundamental assumption is that samples that are located in areas with low disaster intensity mainly represent nondamaged buildings. Furthermore, areas with moderate to strong disaster intensities likely contain damaged and nondamaged buildings. Under this assumption, a procedure that is based on the automatic selection of training samples for learning and calibrating the standard support vector machine classifier is utilized. The second procedure is based on the use of two regularization parameters to define the support vectors. These frameworks avoid the collection of labeled building samples via field surveys and/or visual inspection of optical images, which requires a significant amount of time. The performance of the proposed method is evaluated via application to three real cases: the 2011 Tohoku-Oki earthquake–tsunami, the 2016 Kumamoto earthquake, and the 2018 Okayama floods. The resulted accuracy ranges between 0.85 and 0.89, and thus, it shows that the result can be used for the rapid allocation of affected buildings. Numéro de notice : A2021-711 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3046004 Date de publication en ligne : 13/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3046004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98615
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8288 - 8304[article]