Détail de l'auteur
Auteur Stuart I. Graham |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Regularized regression: A new tool for investigating and predicting tree growth / Stuart I. Graham in Forests, vol 12 n° 9 (September 2021)
[article]
Titre : Regularized regression: A new tool for investigating and predicting tree growth Type de document : Article/Communication Auteurs : Stuart I. Graham, Auteur ; Ariel Rokem, Auteur ; Claire Fortunel, Auteur ; Nathan J.B. Kraft, Auteur ; Janneke Hille Ris Lambers, Auteur Année de publication : 2021 Article en page(s) : n° 1283 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] croissance des arbres
[Termes IGN] inférence statistique
[Termes IGN] interpolation
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] placette d'échantillonnage
[Termes IGN] régressionRésumé : (auteur) Neighborhood models have allowed us to test many hypotheses regarding the drivers of variation in tree growth, but require considerable computation due to the many empirically supported non-linear relationships they include. Regularized regression represents a far more efficient neighborhood modeling method, but it is unclear whether such an ecologically unrealistic model can provide accurate insights on tree growth. Rapid computation is becoming increasingly important as ecological datasets grow in size, and may be essential when using neighborhood models to predict tree growth beyond sample plots or into the future. We built a novel regularized regression model of tree growth and investigated whether it reached the same conclusions as a commonly used neighborhood model, regarding hypotheses of how tree growth is influenced by the species identity of neighboring trees. We also evaluated the ability of both models to interpolate the growth of trees not included in the model fitting dataset. Our regularized regression model replicated most of the classical model’s inferences in a fraction of the time without using high-performance computing resources. We found that both methods could interpolate out-of-sample tree growth, but the method making the most accurate predictions varied among focal species. Regularized regression is particularly efficient for comparing hypotheses because it automates the process of model selection and can handle correlated explanatory variables. This feature means that regularized regression could also be used to select among potential explanatory variables (e.g., climate variables) and thereby streamline the development of a classical neighborhood model. Both regularized regression and classical methods can interpolate out-of-sample tree growth, but future research must determine whether predictions can be extrapolated to trees experiencing novel conditions. Overall, we conclude that regularized regression methods can complement classical methods in the investigation of tree growth drivers and represent a valuable tool for advancing this field toward prediction. Numéro de notice : A2021-720 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.3390/f12091283 En ligne : https://doi.org/10.3390/f12091283 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98636
in Forests > vol 12 n° 9 (September 2021) . - n° 1283[article]