Détail de l'auteur
Auteur Suvarna M. Punalekar |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
National scale mapping of larch plantations for Wales using the Sentinel-2 data archive / Suvarna M. Punalekar in Forest ecology and management, vol 501 (December-1 2021)
[article]
Titre : National scale mapping of larch plantations for Wales using the Sentinel-2 data archive Type de document : Article/Communication Auteurs : Suvarna M. Punalekar, Auteur ; Carole Planque, Auteur ; Richard M. Lucas, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119679 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] carte forestière
[Termes IGN] coupe rase (sylviculture)
[Termes IGN] gestion forestière
[Termes IGN] image infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] Larix decidua
[Termes IGN] maladie phytosanitaire
[Termes IGN] modélisation de la forêt
[Termes IGN] Pays de Galles
[Termes IGN] surveillance forestièreRésumé : (auteur) Accurate spatial information regarding forest types and tree species is immensely important for efficient forest management strategies. In the UK and particularly in Wales, creating a spatial inventory of larch (Larix sps.) plantations that encompasses both the public and private forests has become one of the highest priorities of woodland management policies, particularly given the need to respond to the rapid spread of Phytophthora ramorum fungal disease. For directing disease control measures, national scale, regularly updated mapping of larch distributions is essential. In this study, we applied a ExtraTree classifier machine learning algorithm to multi-year (June 2015 and December 2019) multi-path composites of vegetation indices derived from 10 m Sentinel-2 satellite data (spectral range used in this study: 490–2190 nm) to map the extent of larch plantations across Wales. For areas identified as woody vegetation, areas under larch plantations were associated with a needle-leaved leaf type and deciduous phenology, allowing differentiation from broad-leaved deciduous and needle-leaved evergreen types. The model accuracies for validation, which included overall accuracy, producer’s and user’s accuracies, exceeded 95% and the F1-score was greater than 0.97 for all forest types. Comparison against an independent reference dataset indicated all map accuracies above 90% (F1-score higher than 0.92) with the lowest value being 90.3% for the producer’s accuracy for larch. Short wave infrared and red-edge based indices were particularly useful for discriminating larch from other forest types. Capacity for updating information on clear-felling of larch stands through annual updates of a woody mask was also introduced. The resulting maps of larch plantations for Wales are the most current for Wales covering public as well as private woodlands and can be routinely updated. The classification approach has potential to be transferred to a wider geographical area given the availability of open-source multi-year Sentienl-2 datasets and robust calibration datasets. Numéro de notice : A2021-741 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119679 Date de publication en ligne : 20/09/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98657
in Forest ecology and management > vol 501 (December-1 2021) . - n° 119679[article]