Détail de l'auteur
Auteur Nidhi Jha |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The real potential of current passive satellite data to map aboveground biomass in tropical forests / Nidhi Jha in Remote sensing in ecology and conservation, vol 7 n° 3 (September 2021)
[article]
Titre : The real potential of current passive satellite data to map aboveground biomass in tropical forests Type de document : Article/Communication Auteurs : Nidhi Jha, Auteur ; Nitin Kumar Tripathi, Auteur ; Nicolas Barbier, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 504 - 520 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] biomasse aérienne
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Worldview
[Termes IGN] ThaïlandeRésumé : (auteur) Forest biomass estimation at large scale is challenging and generally entails large uncertainty in tropical regions. With their wall-to-wall coverage ability, passive remote sensing signals are frequently used to extrapolate field estimates of forest aboveground biomass (AGB). However, studies often use limited reference data and/or flawed validation schemes and thus report unreliable extrapolation error estimates. Here, we compared the ability of three medium- to high-resolution passive satellite sensors, Landsat-8 (L8), Sentinel-2B (S2) and Worldview-3 (WV3), to map AGB in a forest landscape of Thailand. We used a large airborne LiDAR-derived AGB dataset as a reference to train and validate a random forest algorithm and conducted robust error assessments and variable selection using spatialized cross-validations. Our results indicate that the selected predictors strongly varied among the three sensors and between analyses restricted to low (≤200 Mg ha−1) and high (>200 Mg ha−1) AGB areas. WV3 and S2 data outperformed L8 data to extrapolate AGB (RMSE of 68 and 72 against 84 Mg ha−1, respectively) due to the inclusion of the red-edge band and, probably, to their higher spatial and spectral resolution. Sensitivity to large AGB values was higher for WV3 than for S2 and L8 with saturation point of 247 Mg ha−1 against 204 and 192 Mg ha−1. AGB values above these saturation points remained poorly predictable, especially for L8, indicating that several tropical forest AGB maps should be interpreted with extreme caution. However, predicted gradients of lower AGB values (≤200 Mg ha−1), i.e., in early forest successional stages, were fairly consistent among sensors (r > 0.70), even if the mean absolute difference between estimates was large when AGB predictions were extrapolated out of the calibration area at regional level (34%). We finally showed that calibrating the model only within the sensitivity AGB domain (e.g., Numéro de notice : A2021-731 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1002/rse2.203 En ligne : https://doi.org/10.1002/rse2.203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98676
in Remote sensing in ecology and conservation > vol 7 n° 3 (September 2021) . - pp 504 - 520[article]