Détail de l'auteur
Auteur Hans Ole Ørka |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
[article]
Titre : Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data Type de document : Article/Communication Auteurs : Michele Dalponte, Auteur ; Alvar J. I. Kallio, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] dépérissement
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données lidar
[Termes IGN] image hyperspectrale
[Termes IGN] image infrarouge
[Termes IGN] Norvège
[Termes IGN] Perceptron multicouche
[Termes IGN] Picea abies
[Termes IGN] régression linéaire
[Termes IGN] régression logistique
[Termes IGN] santé des forêts
[Termes IGN] semis de pointsRésumé : (auteur) Wood decay caused by pathogenic fungi in Norway spruce forests causes severe economic losses in the forestry sector, and currently no efficient methods exist to detect infected trees. The detection of wood decay could potentially lead to improvements in forest management and could help in reducing economic losses. In this study, airborne hyperspectral data were used to detect the presence of wood decay in the trees in two forest areas located in Etnedal (dataset I) and Gran (dataset II) municipalities, in southern Norway. The hyperspectral data used consisted of images acquired by two sensors operating in the VNIR and SWIR parts of the spectrum. Corresponding ground reference data were collected in Etnedal using a cut-to-length harvester while in Gran, field measurements were collected manually. Airborne laser scanning (ALS) data were used to detect the individual tree crowns (ITCs) in both sites. Different approaches to deal with pixels inside each ITC were considered: in particular, pixels were either aggregated to a unique value per ITC (i.e., mean, weighted mean, median, centermost pixel) or analyzed in an unaggregated way. Multiple classification methods were explored to predict rot presence: logistic regression, feed forward neural networks, and convolutional neural networks. The results showed that wood decay could be detected, even if with accuracy varying among the two datasets. The best results on the Etnedal dataset were obtained using a convolution neural network with the first five components of a principal component analysis as input (OA = 65.5%), while on the Gran dataset, the best result was obtained using LASSO with logistic regression and data aggregated using the weighted mean (OA = 61.4%). In general, the differences among aggregated and unaggregated data were small. Numéro de notice : A2022-352 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.3390/rs14081892 Date de publication en ligne : 14/04/2022 En ligne : https://doi.org/10.3390/rs14081892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100541
in Remote sensing > vol 14 n° 8 (April-2 2022) . - n° 1892[article]Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models / Ana de Lera Garrido in Silva fennica, vol 56 n° 2 (April 2022)
[article]
Titre : Estimating forest attributes in airborne laser scanning based inventory using calibrated predictions from external models Type de document : Article/Communication Auteurs : Ana de Lera Garrido, Auteur ; Terje Gobakken, Auteur ; Hans Ole Ørka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 10695 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] Norvège
[Termes IGN] parcelle forestière
[Termes IGN] placette d'échantillonnage
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Forest management inventories assisted by airborne laser scanner data rely on predictive models traditionally constructed and applied based on data from the same area of interest. However, forest attributes can also be predicted using models constructed with data external to where the model is applied, both temporal and geographically. When external models are used, many factors influence the predictions’ accuracy and may cause systematic errors. In this study, volume, stem number, and dominant height were estimated using external model predictions calibrated using a reduced number of up-to-date local field plots or using predictions from reparametrized models. We assessed and compared the performance of three different calibration approaches for both temporally and spatially external models. Each of the three approaches was applied with different numbers of calibration plots in a simulation, and the accuracy was assessed using independent validation data. The primary findings were that local calibration reduced the relative mean difference in 89% of the cases, and the relative root mean squared error in 56% of the cases. Differences between application of temporally or spatially external models were minor, and when the number of local plots was small, calibration approaches based on the observed prediction errors on the up-to-date local field plots were better than using the reparametrized models. The results showed that the estimates resulting from calibrating external models with 20 plots were at the same level of accuracy as those resulting from a new inventory. Numéro de notice : A2022-367 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10695 Date de publication en ligne : 25/04/2022 En ligne : https://doi.org/10.14214/sf.10695 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100589
in Silva fennica > vol 56 n° 2 (April 2022) . - n° 10695[article]Large-area inventory of species composition using airborne laser scanning and hyperspectral data / Hans Ole Ørka in Silva fennica, vol 55 n° 4 (September 2021)
[article]
Titre : Large-area inventory of species composition using airborne laser scanning and hyperspectral data Type de document : Article/Communication Auteurs : Hans Ole Ørka, Auteur ; Endre H. Hansen, Auteur ; Michele Dalponte, Auteur ; Terje Gobakken, Auteur ; Erik Naesset, Auteur Année de publication : 2021 Article en page(s) : n° 10244 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] composition d'un peuplement forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image hyperspectrale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Norvège
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] régression
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index. Numéro de notice : A2021-736 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14214/sf.10244 En ligne : https://doi.org/10.14214/sf.10244 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98695
in Silva fennica > vol 55 n° 4 (September 2021) . - n° 10244[article]Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes / Hans Ole Ørka in Forestry, an international journal of forest research, vol 91 n° 2 (April 2018)
[article]
Titre : Effects of terrain slope and aspect on the error of ALS-based predictions of forest attributes Type de document : Article/Communication Auteurs : Hans Ole Ørka, Auteur ; Ole Martin Bollandsås, Auteur ; Endre H. Hansen, Auteur ; Erik Naesset, Auteur ; Terje Gobakken, Auteur Année de publication : 2018 Article en page(s) : pp 225 - 237 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de variance
[Termes IGN] données dendrométriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de simulation
[Termes IGN] Norvège
[Termes IGN] pente
[Termes IGN] régression non linéaire
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Wall-to-wall forest management inventories with the area-based method using airborne laser scanner (ALS) data are operational in many countries. With this method, empirical relationships are established between ALS metrics and ground reference observations of forest attributes, and wall-to-wall predictions can be made over large areas. However, the prediction errors may be influenced by terrain slope and aspect because the properties of the ALS point cloud are dependent on these factors. Two datasets covering wide ranges of terrain slope and aspect, collected in the western part of Norway, were analysed. The first dataset represented sample plots from an ordinary operational forest management inventory and the second dataset were collected as an experimental dataset where clusters of sample plots were distributed on slopes with different inclinations. Six forest attributes were predicted using non-linear regression and the prediction errors were analysed using univariate- and multivariate analysis of variance. The results showed that slope and aspect affected the prediction errors, but that the effects were small in magnitude. Thus, the current study concludes that terrain effects seem to be negligible in operational forest inventories. Numéro de notice : A2018-652 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/forestry/cpx058 Date de publication en ligne : 30/01/2018 En ligne : https://doi.org/10.1093/forestry/cpx058 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93238
in Forestry, an international journal of forest research > vol 91 n° 2 (April 2018) . - pp 225 - 237[article]