Détail de l'auteur
Auteur Alka Mahajan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Predicting total electron content in ionosphere using vector autoregression model during geomagnetic storm / Sumitra Iyer in Journal of applied geodesy, vol 15 n° 4 (October 2021)
[article]
Titre : Predicting total electron content in ionosphere using vector autoregression model during geomagnetic storm Type de document : Article/Communication Auteurs : Sumitra Iyer, Auteur ; Alka Mahajan, Auteur Année de publication : 2021 Article en page(s) : pp 279 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] auto-régression
[Termes IGN] déformation temporelle dynamique (algorithme)
[Termes IGN] format RINEX
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] modèle ionosphérique
[Termes IGN] série temporelle
[Termes IGN] signal GPS
[Termes IGN] tempête magnétique
[Termes IGN] teneur totale en électrons
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The ionospheric total electron content (TEC) severely impacts the positional accuracy of a single frequency Global Positioning System (GPS) receiver at the equatorial latitudes. The ionosphere causes a frequency-dependent group delay in the GPS-ranging signals, which reduces the receiver’s accuracy. Further, the variations in TEC due to various space weather phenomena make the ionosphere’s behaviour nonhomogeneous and complex. Hence, developing an accurate forecast model that can track the dynamic behaviour of the ionosphere remains a challenge. However, advances in emerging data-driven algorithms have been found helpful in tracking non-stationary behavior in TEC. These models help forecast the delays in advance. The multivariate Vector Autoregression model (VAR) predicts the Ionospheric TEC in the proposed model. The prediction model uses input data compiled in real-time from the lag values of incoming TEC data and features extracted from TEC. The TEC is predicted in real-time and tested for different prediction intervals. The metrics – Mean Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) are used for testing and validating the accuracy of the model statistically. Testing the predicted output accuracy is also done with the dynamic time warping (DTW) algorithm by comparing it with the actual value obtained from the dual-frequency receiver. The model is tested for storm days of the year 2015 for Bangalore and Hyderabad stations and found to be reliable and accurate. A prediction interval of twenty-minute shows the highest accuracy with an error within 10 TECU for all the storm days. Numéro de notice : A2021-745 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2021-0015 Date de publication en ligne : 23/06/2021 En ligne : https://doi.org/10.1515/jag-2021-0015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98717
in Journal of applied geodesy > vol 15 n° 4 (October 2021) . - pp 279 - 291[article]