Détail de l'auteur
Auteur Myung-Jin Jun |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area / Myung-Jin Jun in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
[article]
Titre : A comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area Type de document : Article/Communication Auteurs : Myung-Jin Jun, Auteur Année de publication : 2021 Article en page(s) : pp 2149 - 2167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] arbre de décision
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Extreme Gradient Machine
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal artificiel
[Termes IGN] Séoul
[Termes IGN] zone urbaineRésumé : (auteur) This study compares the performance of gradient boosting decision tree (GBDT), artificial neural networks (ANNs), and random forests (RF) methods in LUC modeling in the Seoul metropolitan area. The results of this study showed that GBDT and RF have higher predictive power than ANN, indicating that tree-based ensemble methods are an effective technique for LUC prediction. Along with the outstanding predictive performance, the DT-based ensemble models provide insights for understanding which factors drive LUCs in complex urban dynamics with the relative importance and nonlinear marginal effects of predictor variables. The GBDT results indicate that distance to the existing residential site has the highest contribution to urban land use conversion (30.4% of the relative importance), while other significant predictor variables were proximity to industrial and public sites (combined 32.3% of relative importance). New residential development is likely to be adjacent to existing residential sites, but nonresidential development occurs at a distance (about 600 m) from such sites. The distance to the central business district (CBD) had increasing marginal effects on residential land use conversion, while no significant pattern was found for nonresidential land use conversion, indicating that Seoul has experienced more population suburbanization than employment decentralization. Numéro de notice : A2021-756 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1887490 Date de publication en ligne : 01/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1887490 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98771
in International journal of geographical information science IJGIS > vol 35 n° 11 (November 2021) . - pp 2149 - 2167[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021111 SL Revue Centre de documentation Revues en salle Disponible