Détail de l'auteur
Auteur R.D. Garg |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatial biodiversity modeling using high-performance computing cluster: A case study to access biological richness in Indian landscape / Hariom Singh in Geocarto international, vol 36 n° 18 ([01/10/2021])
[article]
Titre : Spatial biodiversity modeling using high-performance computing cluster: A case study to access biological richness in Indian landscape Type de document : Article/Communication Auteurs : Hariom Singh, Auteur ; R.D. Garg, Auteur ; Harish Chandra Karnatak, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2023 - 2043 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] autocorrélation spatiale
[Termes IGN] biodiversité
[Termes IGN] coefficient de corrélation
[Termes IGN] distribution spatiale
[Termes IGN] Inde
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] regroupement de données
[Termes IGN] relevé phytosociologique
[Termes IGN] SIG participatifRésumé : (auteur) The parallel processing and distributed GIServices provide an efficient approach to address the geocomputation challenges in biodiversity modeling. Using the widely applied Spatial Biodiversity Model (SBM) as an illustration, this study demonstrates parallelization of the spatial landscape algorithms based on Message Passing Interface (MPI) in cluster computing. The geocomputation based on MPI is performed to characterize the spatial distribution of Biological Richness (BR) for Indian landscape using developed high-performance cluster computing-based model named as SBM-HPC. In performance analysis, the execution time is reduced by 56.42%–81.41% (or the speedups of 2.29–5.38) using the parallel and cluster computing environment. Also, the spatial landscape algorithms of the model are extended to integrate large-scale geodata from online map services archives using distributed GIServices. To validate BR map, the phytosociological data is collected using participatory GIS approach. Furthermore, regression analysis between derived BR map and Shannon-Wiener index (Hˈ) represents high correlation coefficient R2 values.
Highlights :
- Development of spatial biodiversity model using parallel computing on the cluster.
- Geocomputation of spatial landscape indices using large-scale geospatial datasets.
- Distributed GIService integration in model to compute distributed data archives.
- Prediction of biological richness pattern and validation using participatory GIS.
- Characterize correlations between biological richness and bioclimatic patterns.Numéro de notice : A2021-763 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1678679 Date de publication en ligne : 21/10/2019 En ligne : https://doi.org/10.1080/10106049.2019.1678679 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98798
in Geocarto international > vol 36 n° 18 [01/10/2021] . - pp 2023 - 2043[article]