Détail de l'auteur
Auteur Jiabao Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised representation high-resolution remote sensing image scene classification via contrastive learning convolutional neural network / Fengpeng Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 8 (August 2021)
[article]
Titre : Unsupervised representation high-resolution remote sensing image scene classification via contrastive learning convolutional neural network Type de document : Article/Communication Auteurs : Fengpeng Li, Auteur ; Jiabao Li, Auteur ; Wei Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 577 - 591 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal
[Termes IGN] grande échelle
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] moyenne échelle
[Termes IGN] petite échelle
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set. Numéro de notice : A2021-670 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.8.577 Date de publication en ligne : 01/08/2021 En ligne : https://doi.org/10.14358/PERS.87.8.577 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98806
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 8 (August 2021) . - pp 577 - 591[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021081 SL Revue Centre de documentation Revues en salle Disponible