Détail de l'auteur
Auteur Yan Boucher |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Modeling post-logging height growth of black spruce-dominated boreal forests by combining airborne LiDAR and time since harvest maps / Batistin Bour in Forest ecology and management, vol 502 (December-15 2021)
[article]
Titre : Modeling post-logging height growth of black spruce-dominated boreal forests by combining airborne LiDAR and time since harvest maps Type de document : Article/Communication Auteurs : Batistin Bour, Auteur ; Victor Danneyrolles, Auteur ; Yan Boucher, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] carte forestière
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] forêt de production
[Termes IGN] gestion forestière
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] Picea mariana
[Termes IGN] productivité
[Termes IGN] Québec (Canada)
[Termes IGN] récolte de bois
[Termes IGN] semis de pointsRésumé : (auteur) Increase in forest disturbance due to land use as well as climate change has led to an expansion of young forests worldwide, which drives global carbon dynamics and timber allocation. This study presents a method that combines a single airborne LiDAR acquisition and time since harvest maps to model height growth of post-logged black spruce-dominated forests in a 1700 km2 eastern Canadian boreal landscape. We developed a random forest model in which forest height at a 20 m × 20 m pixel resolution is a function of stand age, combined with environmental variables (e.g., slope, site moisture, surface deposit). Our results highlight the model's strong predictive power: least-square regression between predicted and observed height of our validation dataset was very close to the 1:1 relation and strongly supported by validation metrics (R2 = 0.74; relative RMSE = 19%). Environmental variables thus allowed to accurately predict forest productivity with a high spatial resolution (20 m × 20 m pixels) and predicted forest height growth in the first 50 years after logging ranged between 16 and 27 cm·year−1 across the whole study area, with a mean of 20.5 cm·year−1. The spatial patterns of potential height growth were strongly linked to the effect of topographical variables, with better growth rates on mesic slopes compared to poorly drained soils. Such models could have key implications in forest management, for example to maintain forest ecosystem services by adjusting the harvesting rates depending on forest productivity across the landscapes. Numéro de notice : A2021-708 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119697 Date de publication en ligne : 25/09/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98819
in Forest ecology and management > vol 502 (December-15 2021) . - n° 119697[article]