Détail de l'auteur
Auteur Ralf Krasnitzer |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (December-15 2021)
[article]
Titre : Estimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models Type de document : Article/Communication Auteurs : Arne Nothdurft, Auteur ; Christoph Gollob, Auteur ; Ralf Krasnitzer, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119714 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Autriche
[Termes IGN] bois sur pied
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] échantillonnage
[Termes IGN] estimation bayesienne
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] lasergrammétrie
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle de régression
[Termes IGN] modèle mathématique
[Termes IGN] tempête
[Termes IGN] volume en bois
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) A spatial regression model framework is presented to predict growing stock volume loss due to storm Adrian which caused heavy forest damage in the upper Gail valley in Carinthia, Austria, in October 2018. Model parameters were estimated using growing stock volume measured with a terrestrial laser scanner on 62 sample plots distributed across five sub-regions. Predictor variables were derived from high resolution vegetation height measurements collected during an airborne laser scanning campaign. Non-spatial and spatial candidate models were proposed and assessed based on fit to observed data and out-of-sample prediction. Spatial Gaussian processes associated model intercepts and regression coefficients were used to capture spatial dependence. Results show a spatially-varying coefficient model, which allowed the intercept and regression coefficients to vary spatially, yielded the best fit and prediction. Two approaches were considered for prediction over blowdown areas: 1) an areal approach that viewed each blowdown as a single prediction unit indexed by its centroid; and 2) a block approach where each blowdown was partitioned into smaller prediction units to better align with sample plots’ spatial support. Joint prediction was used to acknowledge spatial dependence among block units. Results demonstrated the block approach is preferable as it mitigated change-of-support issues encountered in the areal approach. Despite the small sample size, predictions for 55% of the total 564 blowdown areas, accounting for 93% of the total loss, had a coefficient of variation less than 25%. Key advantages of the proposed regression framework and chosen Bayesian inferential paradigm, were the ability to quantify uncertainty in spatial covariance parameters, propagate parameter uncertainty through to prediction, and provide statistically valid prediction point and interval estimates for individual blowdowns and collections of blowdowns at the sub-region and region scale via posterior predictive distribution summaries. Numéro de notice : A2021-770 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2021.119714 Date de publication en ligne : 07/10/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119714 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98822
in Forest ecology and management > vol 502 (December-15 2021) . - n° 119714[article]