Détail de l'auteur
Auteur Jun Ye |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A method for precisely predicting satellite clock bias based on robust fitting of ARMA models / Guochao Zhang in GPS solutions, vol 26 n° 1 (January 2022)
[article]
Titre : A method for precisely predicting satellite clock bias based on robust fitting of ARMA models Type de document : Article/Communication Auteurs : Guochao Zhang, Auteur ; Songhui Han, Auteur ; Jun Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 3 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] décalage d'horloge
[Termes IGN] erreur systématique interfréquence d'horloge
[Termes IGN] estimation bayesienne
[Termes IGN] international GPS service for geodynamics
[Termes IGN] série temporelle
[Termes IGN] statistique mathématique
[Termes IGN] valeur aberranteRésumé : (auteur) The precise satellite clock bias prediction is critical in improving the positioning, navigation and timing (PNT) service capabilities of the global navigation satellite system (GNSS). Due to the influence of satellite signal path and the observation environment, the satellite clock bias data usually contain outliers that heavily affect the accuracy of satellite clock bias prediction. Based on the time series ARMA model and Bayes statistical theory, we propose a method to precisely predict satellite clock bias and detect outliers in the historical sequence of satellite clock bias. At first, considering the effects of an additive outlier (AO) and innovative outlier (IO), a labeling model for robustly fitting the time series ARMA model and detecting AOs and IOs simultaneously is constructed based on the labeling method of classification variables. Second, the Bayes method for robustly fitting time series ARMA model is proposed based on the Bayes statistical theory. Furthermore, it develops an algorithm to precisely predict satellite clock bias using the Bayes method for robustly fitting the time series ARMA model mentioned above. Finally, in order to illustrate the performance of the method for precisely predicting satellite clock bias that we presented, three examples are designed based on the real GPS data come from the IGS official website, and the prediction results of the method are compared with that of original ARMA model (oARMA), quadratic polynomial model (QP) and gray model (GM). It is found that the method can precisely predict the satellite clock bias as well as accurately detect the outliers in the historical sequence. Numéro de notice : A2022-002 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01182-3 Date de publication en ligne : 20/10/2021 En ligne : https://doi.org/10.1007/s10291-021-01182-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98827
in GPS solutions > vol 26 n° 1 (January 2022) . - n° 3[article]