Détail de l'auteur
Auteur Samed Inyurt |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde / Mir Reza Ghaffari Razin in GPS solutions, vol 26 n° 1 (January 2022)
[article]
Titre : Spatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel-based tomography and radiosonde Type de document : Article/Communication Auteurs : Mir Reza Ghaffari Razin, Auteur ; Samed Inyurt, Auteur Année de publication : 2022 Article en page(s) : n° 1 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] Inférence floue
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] positionnement ponctuel précis
[Termes IGN] précipitation
[Termes IGN] radiosondage
[Termes IGN] retard troposphérique zénithal
[Termes IGN] station GPS
[Termes IGN] vapeur d'eau
[Termes IGN] voxelRésumé : (auteur) Water vapor (WV) is one of the most important parameters in meteorological studies. Using an adaptive neuro-fuzzy inference system (ANFIS), a new method has been proposed for spatiotemporal modeling of precipitable WV (PWV). In a first step, the tropospheric zenith wet delay (ZWD) is calculated using the observations of 23 GPS stations in the northwest of Iran. Out of these 23 stations, 21 stations for training and 2 stations for testing and validating were selected. The observations are for 15 days, ranging from day of year (DOY) 300 to 314 in 2011. The reason for choosing this area and time interval is the availability of a complete set of data. Then, the values of ZWD are converted to PWV. The PWV values obtained from this step are considered as the output of the ANFIS. Also, the latitude and longitude values of the GPS stations, the DOY, observational time (min), temperature (T), pressure (P), and relative humidity (RH) are considered input to ANFIS. The ANFIS network is trained using the back-propagation algorithm. After the training step, the PWV values are evaluated at 2 test stations, KLBR and GGSH, and at Tabriz radiosonde station (38.08° N, 46.28°E). For a more accurate evaluation, all the results of the new method are compared with the voxel-based tomography model. The evaluation of the results is performed using the relative error, standard deviation, correlation coefficient, and root-mean-square error (RMSE). Also, precise point positioning (PPP) is used to better evaluate the proposed model at test stations. The value of the correlation coefficient at the radiosonde station for the ANFIS and voxel is 0.90 and 0.87, respectively. Also, the minimum RMSE calculated for the ANFIS and voxel are 1.02 and 1.06 mm, respectively. In the PPP analysis, an improvement of about 4 mm is observed in the coordinates of the test stations using ANFIS. The results confirm the capability and high accuracy of the proposed model in determining the temporal and spatial variations of PWV. Numéro de notice : A2022-003 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01184-1 Date de publication en ligne : 19/10/2021 En ligne : https://doi.org/10.1007/s10291-021-01184-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98828
in GPS solutions > vol 26 n° 1 (January 2022) . - n° 1[article]