Détail de l'auteur
Auteur Ivan Castillo Camacho |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Initialization methods of convolutional neural networks for detection of image manipulations / Ivan Castillo Camacho (2021)
Titre : Initialization methods of convolutional neural networks for detection of image manipulations Titre original : Méthodes d'initialisation des réseaux de neurones convolutifs pour la détection des manipulations d'images Type de document : Thèse/HDR Auteurs : Ivan Castillo Camacho, Auteur ; Kai Wang, Directeur de thèse Editeur : Grenoble [France] : Université Grenoble Alpes Année de publication : 2021 Importance : 145 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse pour obtenir le grade de Docteur de l'Université Grenoble, spécialité : signal, image, paroles, télécomsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] altération
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] covariance
[Termes IGN] détection d'anomalie
[Termes IGN] estompage
[Termes IGN] filtre passe-haut
[Termes IGN] flux de données
[Termes IGN] infraction
[Termes IGN] manipulation de données
[Termes IGN] qualité des données
[Termes IGN] retouche
[Termes IGN] varianceIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Fake images and videos have engulfed mass communication media. This is not something recent, manipulations and forgeries have occurred since the advent of photography itself. These alterations can go from innocent retouches in an attempt to make an image visually attractive to the spread of misleading information or even the use of false media in legal instances. Accordingly, the creation of methods that can help us assure the authenticity of an image presented as non-modified is of paramount importance. In this thesis, we aim at detecting image manipulation operations using deep learning techniques. We present three methods showing the progression of our work under one common objective, i.e, the design and test of Convolutional Neural Network (CNN) initialization methods for image forensic problems with a variance stability focus for the output of a CNN layer.First, we carry out an extensive review of the state of the art in deep-learning-based methods for image forensics. From this review we can confirm that the first layer of a CNN has big impact on the final performance. Specifically, the initialization used on the first-layer filters plays an important role that should be in line with the image forensic task in hand.As our first attempt to address this research problem, we propose a low-complexity initialization method for CNNs. Taking advantage of previous methods designed for the computer vision field, we extend the popular Xavier method to design a filter that would provide variance stability after a convolution operation. This method generates a set of random high-pass filters for the initialization of a CNN's first layer. These filters allow us to better identify forensic traces which usually lie towards the high-frequency part of the image.This first approach constitutes a good staring point of our work. However, a wrong assumption, largely utilized in the research community, was made. This is corrected in our second method where we follow a different data-dependent approach and take into consideration the real statistical properties of natural images. Accordingly, we propose a scaling method for first-layer filters which can cope well with different CNN initialization algorithms. The objective remains in keeping the stability of the variance of data flow in a CNN. We also present theoretical and experimental studies on the output variance for convolutional filter, which are the basis of our proposed data-dependent scaling.Next we describe a revisited version of our first proposal now with a corrected assumption on the statistics of natural images. More precisely, we propose an improved random high-pass initialization method which does not explicitly compute the statistics of input data. We believe that such a ``data-independent'' approach has higher flexibility and broader application range than our second method in situations where the computation of input statistics is not possible.Our proposed methods are tested over several image forensic problems and different CNN architectures.Finally, during all this thesis work we took part in a challenge competition of image forgery detection organized by the French National Research Agency and the French Directorate General of Armaments. We explain in the Appendix the objectives of the challenge along with a brief description of our work conducted for the competition. Note de contenu : 1- Introduction
2- Background knowledge and state of the art
3- Random high-pass initialization
4- Data-dependent initialization
5- Revisiting the random high-pass initialization
6- Conclusions and perspectivesNuméro de notice : 28437 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : signal, image, paroles, télécoms : Grenoble : 2021 DOI : sans En ligne : https://hal.science/tel-03346063/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98833