Détail de l'auteur
Auteur Majid Rahimzadegan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Particle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images / Mohammad Hossein Gamshadzaei in Geocarto international, vol 36 n° 20 ([01/12/2021])
[article]
Titre : Particle swarm optimization based water index (PSOWI) for mapping the water extents from satellite images Type de document : Article/Communication Auteurs : Mohammad Hossein Gamshadzaei, Auteur ; Majid Rahimzadegan, Auteur Année de publication : 2021 Article en page(s) : pp 2264 - 2278 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multibande
[Termes IGN] analyse spectrale
[Termes IGN] Arménie
[Termes IGN] bande infrarouge
[Termes IGN] cartographie thématique
[Termes IGN] détection d'objet
[Termes IGN] eau de surface
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Google Earth
[Termes IGN] image à haute résolution
[Termes IGN] image satellite
[Termes IGN] indice d'humidité
[Termes IGN] Iran
[Termes IGN] occupation du sol
[Termes IGN] optimisation par essaim de particules
[Termes IGN] polygoneRésumé : (auteur) Various spectral indices have been introduced to detect water extent from satellite images with different performances in various regions. The aim of this study is to provide an efficient index using particle swarm optimization (PSO) algorithm to detect water spread areas from satellite images with similar performance in different regions. This index is introduced for images containing water absorption bands from visible to middle infrared wavelengths. Eleven images were prepared from different satellites and water bodies with various environmental conditions. In addition, 40 pixels from water and 40 pixels from non-water regions were selected as training data for PSO algorithm. Results were evaluated using digitized polygons of water bodies on high-resolution images of Google Earth. The best results in PSO-based water index (PSOWI) were obtained by the combination of two bands (red and middle infrared). PSOWI represented proper performance in the selected various land covers and satellite images. Numéro de notice : A2021-831 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1700554 Date de publication en ligne : 12/12/2019 En ligne : https://doi.org/10.1080/10106049.2019.1700554 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99004
in Geocarto international > vol 36 n° 20 [01/12/2021] . - pp 2264 - 2278[article]Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images / Majid Rahimzadegan in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 9 (September 2021)
[article]
Titre : Estimating regional soil moisture with synergistic use of AMSR2 and MODIS images Type de document : Article/Communication Auteurs : Majid Rahimzadegan, Auteur ; Arash Davari, Auteur ; Ali Sayadi, Auteur Année de publication : 2021 Article en page(s) : pp 649-660 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Advanced Microwave Scanning Radiometer
[Termes IGN] coefficient de corrélation
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] image Terra-MODIS
[Termes IGN] indice d'humidité
[Termes IGN] Iran
[Termes IGN] polarisation
[Termes IGN] réflectance du solRésumé : (Auteur) Soil moisture content (SMC), product of Advanced Microwave Scanning Radiometer 2 (AMSR2), is not at an adequate level of accuracy on a regional scale. The aim of this study is to introduce a simple method to estimate SMC while synergistically using AMSR2 and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements with a higher accuracy on a regional scale. Two MODIS products, including daily reflectance (MYD021) and nighttime land surface temperature (LST) products were used. In 2015, 1442 in situ SMC measurements from six stations in Iran were used as ground-truth data. Twenty models were evaluated using combinations of polarization index (PI), index of soil wetness (ISW), normalized difference vegetation index (NDVI), and LST. The model revealed the best results using a quadratic combination of PI and ISW, a linear form of LST, and a constant value. The overall correlation coefficient, root-mean-square error, and mean absolute error were 0.59, 4.62%, and 3.01%, respectively. Numéro de notice : A2021-673 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00085 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.14358/PERS.20-00085 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98835
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 9 (September 2021) . - pp 649-660[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021091 SL Revue Centre de documentation Revues en salle Disponible