Détail de l'auteur
Auteur Zun Niu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An algorithm to assist the robust filter for tightly coupled RTK/INS navigation system / Zun Niu in Remote sensing, vol 14 n° 10 (May-2 2022)
[article]
Titre : An algorithm to assist the robust filter for tightly coupled RTK/INS navigation system Type de document : Article/Communication Auteurs : Zun Niu, Auteur ; Guangchen Li, Auteur ; Fugui Guo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] C++
[Termes IGN] centrale inertielle
[Termes IGN] erreur de positionnement
[Termes IGN] filtre de Kalman
[Termes IGN] implémentation (informatique)
[Termes IGN] matrice de covariance
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] précision du positionnement
[Termes IGN] rapport signal sur bruit
[Termes IGN] valeur aberranteRésumé : (auteur) The Real-Time Kinematic (RTK) positioning algorithm is a promising positioning technique that can provide real-time centimeter-level positioning precision in GNSS-friendly areas. However, the performance of RTK can degrade in GNSS-hostile areas like urban canyons. The surrounding buildings and trees can reflect and block the Global Navigation Satellite System (GNSS) signals, obstructing GNSS receivers’ ability to maintain signal tracking and exacerbating the multipath effect. A common method to assist RTK is to couple RTK with the Inertial Navigation System (INS). INS can provide accurate short-term relative positioning results. The Extended Kalman Filter (EKF) is usually used to couple RTK with INS, whereas the GNSS outlying observations significantly influence the performance. The Robust Kalman Filter (RKF) is developed to offer resilience against outliers. In this study, we design an algorithm to improve the traditional RKF. We begin by implementing the tightly coupled RTK/INS algorithm and the conventional RKF in C++. We also introduce our specific implementation in detail. Then, we test and analyze the performance of our codes on public datasets. Finally, we propose a novel algorithm to improve RKF and test the improvement. We introduce the Carrier-to-Noise Ratio (CNR) to help detect outliers that should be discarded. The results of the tests show that our new algorithm’s accuracy is improved when compared to the traditional RKF. We also open source the majority of our code, as we find there are few open-source projects for coupled RTK/INS in C++. Researchers can access the codes at our GitHub. Numéro de notice : A2022-401 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.3390/rs14102449 Date de publication en ligne : 20/05/2022 En ligne : https://doi.org/10.3390/rs14102449 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100704
in Remote sensing > vol 14 n° 10 (May-2 2022) . - n° 2449[article]The integration of GPS/BDS real-time kinematic positioning and visual–inertial odometry based on smartphones / Zun Niu in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
[article]
Titre : The integration of GPS/BDS real-time kinematic positioning and visual–inertial odometry based on smartphones Type de document : Article/Communication Auteurs : Zun Niu, Auteur ; Fugui Guo, Auteur ; Qiangqiang Shuai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 699 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] C++
[Termes IGN] centrale inertielle
[Termes IGN] filtre de Kalman
[Termes IGN] format RINEX
[Termes IGN] odomètre
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par BeiDou
[Termes IGN] positionnement par GNSS
[Termes IGN] précision du positionnement
[Termes IGN] programmation informatique
[Termes IGN] robot
[Termes IGN] téléphone intelligent
[Termes IGN] vision par ordinateurRésumé : (auteur) The real-time kinematic positioning technique (RTK) and visual–inertial odometry (VIO) are both promising positioning technologies. However, RTK degrades in GNSS-hostile areas, where global navigation satellite system (GNSS) signals are reflected and blocked, while VIO is affected by long-term drift. The integration of RTK and VIO can improve the accuracy and robustness of positioning. In recent years, smartphones equipped with multiple sensors have become commodities and can provide measurements for integrating RTK and VIO. This paper verifies the feasibility of integrating RTK and VIO using smartphones, and we propose an improved algorithm to integrate RTK and VIO with better performance. We began by developing an Android smartphone application for data collection and then wrote a Python program to convert the data to a robot operating system (ROS) bag. Next, we established two ROS nodes to calculate the RTK results and accomplish the integration. Finally, we conducted experiments in urban areas to assess the integration of RTK and VIO based on smartphones. The results demonstrate that the integration improves the accuracy and robustness of positioning and that our improved algorithm reduces altitude deviation. Our work can aid navigation and positioning research, which is the reason why we open source the majority of the codes at our GitHub. Numéro de notice : A2021-800 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10100699 Date de publication en ligne : 14/10/2021 En ligne : https://doi.org/10.3390/ijgi10100699 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98852
in ISPRS International journal of geo-information > vol 10 n° 10 (October 2021) . - n° 699[article]