Détail de l'auteur
Auteur Vincenzo Saverio Alfio |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery / Massimiliano Pepe in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
[article]
Titre : A novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery Type de document : Article/Communication Auteurs : Massimiliano Pepe, Auteur ; Domenica Costantino, Auteur ; Vincenzo Saverio Alfio, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 697 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme de Gram-Schmidt
[Termes IGN] apprentissage profond
[Termes IGN] ArcGIS
[Termes IGN] détection du bâti
[Termes IGN] empreinte
[Termes IGN] hauteur du bâti
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] Oman
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] reconnaissance automatique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The aim of the paper is to identify a suitable method for the construction of a 3D city model from stereo satellite imagery. In order to reach this goal, it is necessary to build a workflow consisting of three main steps: (1) Increasing the geometric resolution of the color images through the use of pan-sharpening techniques, (2) identification of the buildings’ footprint through deep-learning techniques and, finally, (3) building an algorithm in GIS (Geographic Information System) for the extraction of the elevation of buildings. The developed method was applied to stereo imagery acquired by WorldView-2 (WV-2), a commercial Earth-observation satellite. The comparison of the different pan-sharpening techniques showed that the Gram–Schmidt method provided better-quality color images than the other techniques examined; this result was deduced from both the visual analysis of the orthophotos and the analysis of quality indices (RMSE, RASE and ERGAS). Subsequently, a deep-learning technique was applied for pan sharpening an image in order to extract the footprint of buildings. Performance indices (precision, recall, overall accuracy and the F1measure) showed an elevated accuracy in automatic recognition of the buildings. Finally, starting from the Digital Surface Model (DSM) generated by satellite imagery, an algorithm built in the GIS environment allowed the extraction of the building height from the elevation model. In this way, it was possible to build a 3D city model where the buildings are represented as prismatic solids with flat roofs, in a fast and precise way. Numéro de notice : A2021-801 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10100697 Date de publication en ligne : 14/10/2021 En ligne : https://doi.org/10.3390/ijgi10100697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98853
in ISPRS International journal of geo-information > vol 10 n° 10 (October 2021) . - n° 697[article]