Détail de l'auteur
Auteur Radhika Ravi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Least squares adjustment with a rank-deficient weight matrix and Its applicability to image/Lidar data processing / Radhika Ravi in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
[article]
Titre : Least squares adjustment with a rank-deficient weight matrix and Its applicability to image/Lidar data processing Type de document : Article/Communication Auteurs : Radhika Ravi, Auteur ; Ayman Habib, Auteur Année de publication : 2021 Article en page(s) : pp 717 - 733 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] alignement des données
[Termes IGN] chevauchement
[Termes IGN] compensation par moindres carrés
[Termes IGN] données lidar
[Termes IGN] lidar mobile
[Termes IGN] matrice
[Termes IGN] matrice de covariance
[Termes IGN] modèle de Gauss-Helmert
[Termes IGN] modèle de Gauss-Markov
[Termes IGN] modèle mathématique
[Termes IGN] modélisation 3D
[Termes IGN] pondération
[Termes IGN] semis de pointsRésumé : (Auteur) This article proposes a solution to special least squares adjustment (LSA) models with a rank-deficient weight matrix, which are commonly encountered in geomatics. The two sources of rank deficiency in weight matrices are discussed: naturally occurring due to the inherent characteristics of LSA mathematical models and artificially induced to eliminate nuisance parameters from LSA estimation. The physical interpretation of the sources of rank deficiency is demonstrated using a case study to solve the problem of 3D line fitting, which is often encountered in geomatics but has not been addressed fully to date. Finally, some geomatics-related applications—mobile lidar system calibration, point cloud registration, and single-photo resection—are discussed along with respective experimental results, to emphasize the need to assess LSA models and their weight matrices to draw inferences regarding the effective contribution of observations. The discussion and results demonstrate the vast applications of this research in geomatics as well as other engineering domains. Numéro de notice : A2021-675 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00081R3 Date de publication en ligne : 10/01/2021 En ligne : https://doi.org/10.14358/PERS.20-00081R3 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98861
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 717 - 733[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible