Détail de l'auteur
Auteur Anjali Madhu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring fuzzy local spatial information algorithms for remote sensing image classification / Anjali Madhu in Remote sensing, vol 13 n° 20 (October-2 2021)
[article]
Titre : Exploring fuzzy local spatial information algorithms for remote sensing image classification Type de document : Article/Communication Auteurs : Anjali Madhu, Auteur ; Anil Kumar, Auteur ; Peng Jia, Auteur Année de publication : 2021 Article en page(s) : n° 4163 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification dirigée
[Termes IGN] classification floue
[Termes IGN] classification pixellaire
[Termes IGN] distance euclidienne
[Termes IGN] erreur moyenne quadratique
[Termes IGN] Inde
[Termes IGN] matrice d'erreur
[Termes IGN] occupation du sol
[Termes IGN] théorie des possibilitésRésumé : (auteur) Fuzzy c-means (FCM) and possibilistic c-means (PCM) are two commonly used fuzzy clustering algorithms for extracting land use land cover (LULC) information from satellite images. However, these algorithms use only spectral or grey-level information of pixels for clustering and ignore their spatial correlation. Different variants of the FCM algorithm have emerged recently that utilize local spatial information in addition to spectral information for clustering. Such algorithms are seen to generate clustering outputs that are more enhanced than the classical spectral-based FCM algorithm. Nonetheless, the scope of integrating spatial contextual information with the conventional PCM algorithm, which has several advantages over the FCM algorithm for supervised classification, has not been explored much. This study proposed integrating local spatial information with the PCM algorithm using simpler but proven approaches from available FCM-based local spatial information algorithms. The three new PCM-based local spatial information algorithms: Possibilistic c-means with spatial constraints (PCM-S), possibilistic local information c-means (PLICM), and adaptive possibilistic local information c-means (ADPLICM) algorithms, were developed corresponding to the available fuzzy c-means with spatial constraints (FCM-S), fuzzy local information c-means (FLICM), and adaptive fuzzy local information c-means (ADFLICM) algorithms. Experiments were conducted to analyze and compare the FCM and PCM classifier variants for supervised LULC classifications in soft (fuzzy) mode. The quantitative assessment of the soft classification results from fuzzy error matrix (FERM) and root mean square error (RMSE) suggested that the new PCM-based local spatial information classifiers produced higher accuracies than the PCM, FCM, or its local spatial variants, in the presence of untrained classes and noise. The promising results from PCM-based local spatial information classifiers suggest that the PCM algorithm, which is known to be naturally robust to noise, when integrated with local spatial information, has the potential to result in more efficient classifiers capable of better handling ambiguities caused by spectral confusions in landscapes. Numéro de notice : A2021-806 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204163 Date de publication en ligne : 18/10/2021 En ligne : https://doi.org/10.3390/rs13204163 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98864
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4163[article]