Détail de l'auteur
Auteur Ruiheng Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep-learning-based burned area mapping using the synergy of Sentinel-1&2 data / Qi Zhang in Remote sensing of environment, vol 264 (October 2021)
[article]
Titre : Deep-learning-based burned area mapping using the synergy of Sentinel-1&2 data Type de document : Article/Communication Auteurs : Qi Zhang, Auteur ; Linlin Ge, Auteur ; Ruiheng Zhang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112575 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] Californie (Etats-Unis)
[Termes IGN] cartographie thématique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] incendie
[Termes IGN] réflectance du sol
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Around 350 million hectares of land are affected by wildfires every year influencing the health of ecosystems and leaving a trail of destruction. Accurate information over burned areas (BA) is essential for governments and communities to prioritize recovery actions. Prior research over the past decades has established the potentials and limitations of space-borne earth observation for mapping BA over large geographic areas at various scales. The operational deployment of Sentinel-1 and Sentinel-2 constellations significantly improved the quality and quantity of the imagery from the microwave (C-band) and optical regions on the spectrum. Based on that, this study set to investigate whether the existing coarse BA products can be further improved by the synergy of optical surface reflectance (SR), radar backscatter coefficient (BS), and/or radar interferometric coherence (COR) data with higher spatial resolutions. A Siamese Self-Attention (SSA) classification strategy is proposed for the multi-sensor BA mapping and a multi-source dataset is constructed at the object level for the training and testing. Results are analyzed by test sites, feature sources, and classification strategies to appraise the improvements achieved by the proposed method. Numéro de notice : A2021-807 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112575 Date de publication en ligne : 06/07/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98866
in Remote sensing of environment > vol 264 (October 2021) . - n° 112575[article]