Détail de l'auteur
Auteur Seakwon Yeom |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Intelligent processing on image and optical information Type de document : Monographie Auteurs : Seakwon Yeom, Éditeur scientifique Editeur : Bâle [Suisse] : Multidisciplinary Digital Publishing Institute MDPI Année de publication : 2020 Importance : 324 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-03936-945-4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement de lignes
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] navigation autonome
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation d'imageRésumé : (éditeur) This book focuses on the intelligent processing of images and optical information acquired by various imaging methods. Intelligent image and optical information processing have paved the way for the recent epoch of new intelligence and information era. Certainly, information acquired by various imaging techniques is of tremendous value; thus, an intelligent analysis of them is necessary to make the best use of it. A broad range of research fields is included in this book. Many studies focus on object classification and detection. Registration, segmentation, and fusion are performed between a series of images. Many valuable and up-to-most recent technologies are provided to solve the real problems in selected papers. Note de contenu : 1- Special issue on intelligent processing on image and optical information
2- Change detection of water resources via remote sensing: An L-V-NSCT approach
3- A texture classification approach based on the integrated optimization for parameters and features of gabor filter via hybrid ant lion optimizer
4- Real-time automated segmentation and classification of calcaneal fractures in CT images
5- Automatic zebrafish egg phenotype recognition from bright-field microscopic images using deep convolutional neural network
6- Zebrafish larvae phenotype classification from bright-field microscopic images using a two-tier deep-learning pipeline
7- Unsupervised generation and synthesis of facial images via an auto-encoder-based deep generative adversarial network
8- Detecting green mold pathogens on lemons using hyperspectral images
9- Review on computer aided weld defect detection from radiography images
10- Feature extraction with discrete non-separable shearlet transform and its application to surface inspection of continuous casting slabs
11- A novel extraction method for wildlife monitoring images with wireless multimedia sensor
networks (WMSNs)
12- IMU-aided high-frequency Lidar odometry for autonomous driving
13- Determination of the optimal state of dough fermentation in bread production by using optical sensors and deep learning
14- Multi-sensor face registration based on global and local structures
15- Multifocus image fusion using a sparse and low-rank matrix decomposition for aviator’s night vision Goggle
16- Error resilience for block compressed sensing with multiple-channel transmission
17- Image completion with hybrid interpolation in tensor representation
18- A correction method for heat wave distortion in digital image correlation measurements
based on background-oriented schlieren
19- An effective optimization method for machine learning based on ADAM
20- Boundary matching and interior connectivity-based cluster validity analysisNuméro de notice : 28438 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Recueil / ouvrage collectif DOI : 10.3390/books978-3-03936-945-4 En ligne : https://doi.org/10.3390/books978-3-03936-945-4 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98875