Détail de l'auteur
Auteur Liza Stančič |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fluvial gravel bar mapping with spectral signal mixture analysis / Liza Stančič in European journal of remote sensing, vol 54 sup 1 (2021)
[article]
Titre : Fluvial gravel bar mapping with spectral signal mixture analysis Type de document : Article/Communication Auteurs : Liza Stančič, Auteur ; Krištof Oštir, Auteur ; Žiga Kokalj, Auteur Année de publication : 2021 Article en page(s) : pp 31 - 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] gravier
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] précision infrapixellaire
[Termes IGN] réflectance spectrale
[Termes IGN] rivière
[Termes IGN] signature spectrale
[Termes IGN] SlovénieRésumé : (auteur) The paper presents a method for mapping fluvial gravel bars based on Sentinel-2 and Landsat imagery. The proposed method therefore uses spectral signal mixture analysis (SSMA) because its results allow the development of land cover fraction maps for surface water, gravel, and vegetation. The method is validated on a spatially heterogeneous mountainous area in the upper Soča river basin in north-west Slovenia, Central Europe. Unmixing results in highly accurate fraction maps with MAE of around 0.1. Gravel fractions are mapped the most accurately, indicating that the approach can be used successfully for fluvial gravel bar mapping. Endmember sets selected automatically perform slightly worse (MAE higher by at most 0.05) than sets selected manually based on high resolution reference data. Both Sentinel-2 and Landsat imagery can be used for accurate mapping with differences between the two remote sensing systems within 0.05 MAE. For the study area, the SSMA-based soft classification method is more accurate for land cover mapping than a Spectral Angle Mapping-based hard classification. The method is promising for an effective use in other cases where highly accurate subpixel information is needed, because it is able to detect small-scale changes that could go unnoticed with hard classification mapping. Numéro de notice : A2021-817 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1811776 Date de publication en ligne : 30/08/2020 En ligne : https://doi.org/10.1080/22797254.2020.1811776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98906
in European journal of remote sensing > vol 54 sup 1 (2021) . - pp 31 - 46[article]