Détail de l'auteur
Auteur Chen Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Conventional and neural network-based water vapor density model for GNSS troposphere tomography / Chen Liu in GPS solutions, vol 26 n° 1 (January 2022)
[article]
Titre : Conventional and neural network-based water vapor density model for GNSS troposphere tomography Type de document : Article/Communication Auteurs : Chen Liu, Auteur ; Yibin Yao, Auteur ; Chaoqian Xu, Auteur Année de publication : 2022 Article en page(s) : n° 4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] classification par réseau neuronal
[Termes IGN] erreur absolue
[Termes IGN] étalonnage de modèle
[Termes IGN] modèle météorologique
[Termes IGN] propagation troposphérique
[Termes IGN] tomographie par GPS
[Termes IGN] vapeur d'eau
[Termes IGN] voxelRésumé : (auteur) Global navigation satellite system (GNSS) water vapor (WV) tomography is a promising technique to reconstruct the three-dimensional (3D) WV field. However, this technique usually suffers from the ill-posed problem caused by the poor geometry of GNSS rays, resulting in underdetermined tomographic equations. Such equations often rely on iterative methods for solving, but conventional iterative approaches require accurate initial WV density. To address this demand, we proposed two models for WV density estimation. One is the conventional model (CO model) that consists of an exponential model and a linear least-squares model, which are used to describe the spatial and temporal variability of the WV density, respectively. The other is a neural network model (NN model) that uses a backpropagation neural network (BPNN) to fit the nonlinear variation of WV density in both spatial and temporal domains. WV density derived from a Hong Kong (HK) radiosonde station (RS) during 2020 was used to validate the proposed models. Validation results show that both models well describe the spatial and temporal distribution of the WV density. The NN model exhibits better prediction performance than the CO model in terms of root mean square error (RMSE) and bias. We also applied the proposed models to GNSS WV tomography to test their performance in extreme weather conditions. Test results show that the proposed model-based GNSS tomography can correct the content of WV density but cannot accurately sense its irregular distribution. Numéro de notice : A2022-005 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-021-01188-x Date de publication en ligne : 23/10/2021 En ligne : https://doi.org/10.1007/s10291-021-01188-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98920
in GPS solutions > vol 26 n° 1 (January 2022) . - n° 4[article]