Détail de l'auteur
Auteur R. Vijaya Geetha |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A feature based change detection approach using multi-scale orientation for multi-temporal SAR images / R. Vijaya Geetha in European journal of remote sensing, vol 54 sup 2 (2021)
[article]
Titre : A feature based change detection approach using multi-scale orientation for multi-temporal SAR images Type de document : Article/Communication Auteurs : R. Vijaya Geetha, Auteur ; S. Kalaivani, Auteur Année de publication : 2021 Article en page(s) : pp 248 - 264 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse de groupement
[Termes IGN] anisotropie
[Termes IGN] chatoiement
[Termes IGN] classification non dirigée
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection de changement
[Termes IGN] filtre de Gabor
[Termes IGN] image multitemporelle
[Termes IGN] image radar moirée
[Termes IGN] matrice de confusion
[Termes IGN] transformation en ondelettesRésumé : (auteur) Excellent operation regardless of weather conditions and superior resolution independent of sensor light are the most attractive and desired features of synthetic aperture radar (SAR) imagery. This paper proposes an exclusive multi-scale with multiple orientation approach for multi-temporal SAR images. This approach integrates pre-processing and change detection. Pre-processing is performed on the SAR imagery through speckle reducing anisotropic diffusion and discrete wavelet transform. The processed speckle-free images are designed by Log-Gabor filter bank in terms of multi-scale with multiple orientations. The maximum magnitude of multiple orientations is concatenated to obtain feature-based scale representation. Each scale is dealt with multiple orientations and is compared by band-wise subtraction to retrieve difference image (DI) coefficient. The series of the difference coefficients from each scale are add-on together to estimate a DI. Thus, the resultant image of multi-scale orientation gives perception of detailed information with specific contour. Constrained k-means clustering algorithm is preferred to achieve change and un-change map. Performance of the proposed approach is validated on three real SAR image datasets. The effective change detection is examined by using confusion matrix parameters. Experimental results are described to show the efficacy of the proposed approach. Numéro de notice : A2021-819 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1759457 Date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1080/22797254.2020.1759457 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98924
in European journal of remote sensing > vol 54 sup 2 (2021) . - pp 248 - 264[article]