Détail de l'auteur
Auteur Lu Niu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Identifying surface urban heat island drivers and their spatial heterogeneity in China’s 281 cities: An empirical study based on multiscale geographically weighted regression / Lu Niu in Remote sensing, vol 13 n° 21 (November-1 2021)
[article]
Titre : Identifying surface urban heat island drivers and their spatial heterogeneity in China’s 281 cities: An empirical study based on multiscale geographically weighted regression Type de document : Article/Communication Auteurs : Lu Niu, Auteur ; Zhengfeng Zhang, Auteur ; Peng Zhong, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4428 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse géovisuelle
[Termes IGN] analyse multiéchelle
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] échelle géographique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] nuit
[Termes IGN] régression géographiquement pondérée
[Termes IGN] variation diurne
[Termes IGN] variation saisonnière
[Termes IGN] zone urbaineRésumé : (auteur) The spatially heterogeneous nature and geographical scale of surface urban heat island (SUHI) driving mechanisms remain largely unknown, as most previous studies have focused solely on their global performance and impact strength. This paper analyzes diurnal and nocturnal SUHIs in China based on the multiscale geographically weighted regression (MGWR) model for 2005, 2010, 2015, and 2018. Compared to results obtained using the ordinary least square (OLS) model, the MGWR model has a lower corrected Akaike information criterion value and significantly improves the model’s coefficient of determination (OLS: 0.087–0.666, MGWR: 0.616–0.894). The normalized difference vegetation index (NDVI) and nighttime light (NTL) are the most critical drivers of daytime and nighttime SUHIs, respectively. In terms of model bandwidth, population and Δfine particulate matter are typically global variables, while ΔNDVI, intercept (i.e., spatial context), and NTL are local variables. The nighttime coefficient of ΔNDVI is significantly negative in the more economically developed southern coastal region, while it is significantly positive in northwestern China. Our study not only improves the understanding of the complex drivers of SUHIs from a multiscale perspective but also provides a basis for urban heat island mitigation by more precisely identifying the heterogeneity of drivers. Numéro de notice : A2021-821 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13214428 Date de publication en ligne : 03/11/2021 En ligne : https://doi.org/10.3390/rs13214428 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98931
in Remote sensing > vol 13 n° 21 (November-1 2021) . - n° 4428[article]