Détail de l'auteur
Auteur Taras Lazariv |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods / Ferdinand Maiwald in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
[article]
Titre : Fully automated pose estimation of historical images in the context of 4D geographic information systems utilizing machine learning methods Type de document : Article/Communication Auteurs : Ferdinand Maiwald, Auteur ; Christoph Lehmann, Auteur ; Taras Lazariv, Auteur Année de publication : 2021 Article en page(s) : n° 748 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] apprentissage automatique
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] échelle de temps
[Termes IGN] estimation de pose
[Termes IGN] image ancienne
[Termes IGN] image terrestre
[Termes IGN] métadonnées
[Termes IGN] modélisation 4D
[Termes IGN] patrimoine culturel
[Termes IGN] recherche d'image basée sur le contenu
[Termes IGN] récupération de données
[Termes IGN] structure-from-motion
[Termes IGN] système d'information géographiqueRésumé : (auteur) The idea of virtual time machines in digital environments like hand-held virtual reality or four-dimensional (4D) geographic information systems requires an accurate positioning and orientation of urban historical images. The browsing of large repositories to retrieve historical images and their subsequent precise pose estimation is still a manual and time-consuming process in the field of Cultural Heritage. This contribution presents an end-to-end pipeline from finding relevant images with utilization of content-based image retrieval to photogrammetric pose estimation of large historical terrestrial image datasets. Image retrieval as well as pose estimation are challenging tasks and are subjects of current research. Thereby, research has a strong focus on contemporary images but the methods are not considered for a use on historical image material. The first part of the pipeline comprises the precise selection of many relevant historical images based on a few example images (so called query images) by using content-based image retrieval. Therefore, two different retrieval approaches based on convolutional neural networks (CNN) are tested, evaluated, and compared with conventional metadata search in repositories. Results show that image retrieval approaches outperform the metadata search and are a valuable strategy for finding images of interest. The second part of the pipeline uses techniques of photogrammetry to derive the camera position and orientation of the historical images identified by the image retrieval. Multiple feature matching methods are used on four different datasets, the scene is reconstructed in the Structure-from-Motion software COLMAP, and all experiments are evaluated on a newly generated historical benchmark dataset. A large number of oriented images, as well as low error measures for most of the datasets, show that the workflow can be successfully applied. Finally, the combination of a CNN-based image retrieval and the feature matching methods SuperGlue and DISK show very promising results to realize a fully automated workflow. Such an automated workflow of selection and pose estimation of historical terrestrial images enables the creation of large-scale 4D models. Numéro de notice : A2021-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110748 Date de publication en ligne : 04/11/2021 En ligne : https://doi.org/10.3390/ijgi10110748 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98964
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - n° 748[article]