Détail de l'auteur
Auteur Zimo Shen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features / Hai Tan in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
[article]
Titre : Semi-automatic extraction of rural roads under the constraint of combined geometric and texture features Type de document : Article/Communication Auteurs : Hai Tan, Auteur ; Zimo Shen, Auteur ; Jiguang Dai, Auteur Année de publication : 2021 Article en page(s) : pp 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] chemin rural
[Termes IGN] Chine
[Termes IGN] coefficient de corrélation
[Termes IGN] contrainte géométrique
[Termes IGN] corrélation croisée normalisée
[Termes IGN] courbure
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction semi-automatique
[Termes IGN] image à haute résolution
[Termes IGN] modèle de simulation
[Termes IGN] niveau de gris (image)
[Termes IGN] route
[Termes IGN] texture d'imageRésumé : (auteur) The extraction of road information from high-resolution remotely-sensed images has important application value in many fields. Rural roads have the characteristics of relatively narrow widths and diversified pavement materials; these characteristics can easily lead to problems involving the similarity of the road texture with the texture of surrounding objects and make it difficult to improve the automation of traditional high-precision road extraction methods. Based on this background, a semi-automatic rural road extraction method constrained by a combination of geometric and texture features is proposed in this paper. First, an adaptive road width extraction model is proposed to improve the accuracy of the initial road centre point. Then, aiming at the continuous change of curvature of rural roads, a tracking direction prediction model is proposed. Finally, a matching model under geometric texture constraints is proposed, which solves the problem of similarity between road and neighbourhood texture to a certain extent. The experimental results show that by selecting different types of experimental scenes or remotely sensed image data, compared with other methods, the proposed method can not only guarantee the road extraction accuracy but also improve the degree of automation to a certain extent. Numéro de notice : A2021-850 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10110754 Date de publication en ligne : 09/11/2021 En ligne : https://doi.org/10.3390/ijgi10110754 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99009
in ISPRS International journal of geo-information > vol 10 n° 11 (November 2021) . - pp 754[article]