Détail de l'auteur
Auteur Otto Heimonen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Geospatial analysis of the spreading of COVID-19 In the United States Type de document : Mémoire Auteurs : Otto Heimonen, Auteur Editeur : Tampere [Finlande] : Tampere University Année de publication : 2021 Importance : 67 p. Format : 21 x 30 cm Note générale : bibliographie
Master’s Degree Programme in Computational Big Data AnalyticsLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] autocorrélation spatiale
[Termes IGN] champ aléatoire conditionnel
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] Etats-Unis
[Termes IGN] maladie infectieuse
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] modèle de simulationRésumé : (auteur) The COVID-19 pandemic has been a big threat to public health and there is an increasing need for efficient modelling of pathogens, predicting the daily infection rates to reduce the spread of COVID-19.
The Moran’s and Geary’s statistics showed significant spatial autocorrelation in the infection counts for the
US COVID-19 data. Spatial regression using the simultaneous autoregression (SAR) and conditional autoregression (CAR) models indicate clear association between the confirmed cases and the number of population and the population density in both national county and state specific analyses. The SAR model provided a better model fit with the low AIC value, leaving no significant autocorrelation for the residuals. The approximate Bayesian computation (ABC) methods were used to provide a flexible posterior distribution of the infection rate for COVID-19 based on the first 100 days of the pandemic. Three different simulation methods such as ABC-Rejection, ABC-Markov Chain Monte Carlo (MCMC) and ABC-Sequential Monte Carlo (SMC) were employed and compared. These algorithms seem to give reasonable posterior estimates for the average daily infections when the likelihood calculations for the spread of a harmful pathogen become complex, or intractable entirely. The posterior distributions of ABC-MCMC and ABC-SMC provided plausible estimations covering all of the observed infection rates at different time points.Note de contenu : 1- Introduction
2- Methods
3- Empirical data analysis
4- DiscussionNuméro de notice : 28455 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Mémoire masters divers DOI : sans En ligne : https://trepo.tuni.fi/handle/10024/134567 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99025