Détail de l'auteur
Auteur Guangqin Song |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies / Guangqin Song in ISPRS Journal of photogrammetry and remote sensing, vol 183 (January 2022)
[article]
Titre : Monitoring leaf phenology in moist tropical forests by applying a superpixel-based deep learning method to time-series images of tree canopies Type de document : Article/Communication Auteurs : Guangqin Song, Auteur ; Shengbiao Wu, Auteur ; Calvin K.F. Lee, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 19 - 33 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme SLIC
[Termes IGN] apprentissage profond
[Termes IGN] canopée
[Termes IGN] classification dirigée
[Termes IGN] diagnostic foliaire
[Termes IGN] Enhanced vegetation index
[Termes IGN] feuille (végétation)
[Termes IGN] forêt tropicale
[Termes IGN] Panama
[Termes IGN] phénologie
[Termes IGN] photosynthèse
[Termes IGN] segmentation sémantique
[Termes IGN] série temporelle
[Termes IGN] superpixel
[Termes IGN] variation saisonnièreRésumé : (auteur) Tropical leaf phenology—particularly its variability at the tree-crown scale—dominates the seasonality of carbon and water fluxes. However, given enormous species diversity, accurate means of monitoring leaf phenology in tropical forests is still lacking. Time series of the Green Chromatic Coordinate (GCC) metric derived from tower-based red–greenblue (RGB) phenocams have been widely used to monitor leaf phenology in temperate forests, but its application in the tropics remains problematic. To improve monitoring of tropical phenology, we explored the use of a deep learning model (i.e. superpixel-based Residual Networks 50, SP-ResNet50) to automatically differentiate leaves from non-leaves in phenocam images and to derive leaf fraction at the tree-crown scale. To evaluate our model, we used a year of data from six phenocams in two contrasting forests in Panama. We first built a comprehensive library of leaf and non-leaf pixels across various acquisition times, exposure conditions and specific phenocams. We then divided this library into training and testing components. We evaluated the model at three levels: 1) superpixel level with a testing set, 2) crown level by comparing the model-derived leaf fractions with those derived using image-specific supervised classification, and 3) temporally using all daily images to assess the diurnal stability of the model-derived leaf fraction. Finally, we compared the model-derived leaf fraction phenology with leaf phenology derived from GCC. Our results show that: 1) the SP-ResNet50 model accurately differentiates leaves from non-leaves (overall accuracy of 93%) and is robust across all three levels of evaluations; 2) the model accurately quantifies leaf fraction phenology across tree-crowns and forest ecosystems; and 3) the combined use of leaf fraction and GCC helps infer the timing of leaf emergence, maturation and senescence, critical information for modeling photosynthetic seasonality of tropical forests. Collectively, this study offers an improved means for automated tropical phenology monitoring using phenocams. Numéro de notice : A2022-009 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.10.023 Date de publication en ligne : 10/11/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.10.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99057
in ISPRS Journal of photogrammetry and remote sensing > vol 183 (January 2022) . - pp 19 - 33[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2022011 SL Revue Centre de documentation Revues en salle Disponible 081-2022013 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2022012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt