Détail de l'auteur
Auteur Renato César Dos santos |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
K-means clustering based on omnivariance attribute for building detection from airborne lidar data / Renato César Dos santos in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
[article]
Titre : K-means clustering based on omnivariance attribute for building detection from airborne lidar data Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; A.F. Habib, Auteur Année de publication : 2022 Article en page(s) : pp 111 - 118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] morphologie mathématique
[Termes IGN] semis de pointsRésumé : (auteur) Building detection is an important process in urban applications. In the last decades, 3D point clouds derived from airborne LiDAR have been widely explored. In this paper, we propose a building detection method based on K-means clustering and the omnivariance attribute derived from eigenvalues. The main contributions lie on the automatic detection without the need for training and optimal neighborhood definition for local attribute estimation. Additionally, one refinement step based on mathematical morphology (MM) operators to minimize the classification errors (commission and omission errors) is proposed. The experiments were conducted in three study areas. In general, the results indicated the potential of proposed method, presenting an average Fscore around 97%. Numéro de notice : A2022-431 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-2-2022-111-2022 Date de publication en ligne : 17/05/2022 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2022-111-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100737
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2022 (2022 edition) . - pp 111 - 118[article]The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space / Renato César Dos santos in Applied geomatics, vol 13 n° 4 (December 2021)
[article]
Titre : The use of Otsu algorithm and multi-temporal airborne LiDAR data to detect building changes in urban space Type de document : Article/Communication Auteurs : Renato César Dos santos, Auteur ; Mauricio Galo, Auteur ; André C. Carrilho, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 499 - 513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme de Otsu
[Termes IGN] analyse de groupement
[Termes IGN] Brésil
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données multitemporelles
[Termes IGN] espace urbain
[Termes IGN] modèle numérique de surface
[Termes IGN] planéité
[Termes IGN] semis de points
[Termes IGN] seuillageRésumé : (auteur) Building change detection techniques are essential for several urban applications. In this context, multi-temporal airborne LiDAR data has been considered an effective alternative since it has some advantages over conventional photogrammetry. Despite several works in the literature, the automatic class definition with great accuracy and performance remains a challenge in change detection. The developed strategies usually explore training samples or empirical thresholds to discriminate the classes. To overcome this limitation, we proposed an automatic building change detection method based on Otsu algorithm and median planarity attribute computed from eigenvalues. The main contribution corresponds to the automatic and unsupervised identification of building changes. The experiments were conducted using airborne LiDAR data from two epochs: 2012 and 2014. From qualitative and quantitative analysis, the robustness of the proposed method in detecting building changes in urban areas was evaluated, presenting completeness and correctness around 99% and 76%, respectively. Numéro de notice : A2021-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1007/s12518-021-00371-6 Date de publication en ligne : 24/04/2021 En ligne : https://doi.org/10.1007/s12518-021-00371-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99062
in Applied geomatics > vol 13 n° 4 (December 2021) . - pp 499 - 513[article]