Détail de l'auteur
Auteur Sean Krisanski |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Forest structural complexity tool: An open source, fully-automated tool for measuring forest point clouds / Sean Krisanski in Remote sensing, vol 13 n° 22 (November-2 2021)
[article]
Titre : Forest structural complexity tool: An open source, fully-automated tool for measuring forest point clouds Type de document : Article/Communication Auteurs : Sean Krisanski, Auteur ; Mohammad Sadegh Taskhiri, Auteur ; Susana Gonzalez Aracil, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4677 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] édition en libre accès
[Termes IGN] logiciel libre
[Termes IGN] modèle numérique de terrain
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] squelettisation
[Termes IGN] structure-from-motion
[Termes IGN] télédétection par lidarRésumé : (auteur) Forest mensuration remains critical in managing our forests sustainably, however, capturing such measurements remains costly, time-consuming and provides minimal amounts of information such as diameter at breast height (DBH), location, and height. Plot scale remote sensing techniques show great promise in extracting detailed forest measurements rapidly and cheaply, however, they have been held back from large-scale implementation due to the complex and time-consuming workflows required to utilize them. This work is focused on describing and evaluating an approach to create a robust, sensor-agnostic and fully automated forest point cloud measurement tool called the Forest Structural Complexity Tool (FSCT). The performance of FSCT is evaluated using 49 forest plots of terrestrial laser scanned (TLS) point clouds and 7022 destructively sampled manual diameter measurements of the stems. FSCT was able to match 5141 of the reference diameter measurements fully automatically with mean, median and root mean squared errors (RMSE) of 0.032 m, 0.02 m, and 0.103 m respectively. A video demonstration is also provided to qualitatively demonstrate the diversity of point cloud datasets that the tool is capable of measuring. FSCT is provided as open source, with the goal of enabling plot scale remote sensing techniques to replace most structural forest mensuration in research and industry. Future work on this project will seek to make incremental improvements to this methodology to further improve the reliability and accuracy of this tool in most high-resolution forest point clouds. Numéro de notice : A2021-861 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13224677 Date de publication en ligne : 19/11/2021 En ligne : https://doi.org/10.3390/rs13224677 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99075
in Remote sensing > vol 13 n° 22 (November-2 2021) . - n° 4677[article]