Détail de l'auteur
Auteur Nina R. Brooks |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Scalable deep learning to identify brick kilns and aid regulatory capacity / Jihyeon Lee in Proceedings of the National Academy of Sciences of the United States of America PNAS, vol 118 n° 17 (27 April 2021)
[article]
Titre : Scalable deep learning to identify brick kilns and aid regulatory capacity Type de document : Article/Communication Auteurs : Jihyeon Lee, Auteur ; Nina R. Brooks, Auteur ; Fahim Tajwar, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° e2018863118 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Bangladesh
[Termes IGN] chaîne de traitement
[Termes IGN] image Worldview
[Termes IGN] pollution atmosphériqueMots-clés libres : briqueterie Résumé : (auteur) Improving compliance with environmental regulations is critical for promoting clean environments and healthy populations. In South Asia, brick manufacturing is a major source of pollution but is dominated by small-scale, informal producers who are difficult to monitor and regulate—a common challenge in low-income settings. We demonstrate a low-cost, scalable approach for locating brick kilns in high-resolution satellite imagery from Bangladesh. Our approach identifies kilns with 94.2% accuracy and 88.7% precision and extracts the precise GPS coordinates of every brick kiln across Bangladesh. Using these estimates, we show that at least 12% of the population of Bangladesh (>18 million people) live within 1 km of a kiln and that 77% and 9% of kilns are (illegally) within 1 km of schools and health facilities, respectively. Finally, we show how kilns contribute up to 20.4 μg/m3 of PM2.5 (particulate matter of a diameter less than 2.5 μm) in Dhaka when the wind blows from an unfavorable direction. We document inaccuracies and potential bias with respect to local regulations in the government data. Our approach demonstrates how machine learning and Earth observation can be combined to better understand the extent and implications of regulatory compliance in informal industry. Numéro de notice : A2021-793 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1073/pnas.2018863118 En ligne : https://doi.org/10.1073/pnas.2018863118 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99084
in Proceedings of the National Academy of Sciences of the United States of America PNAS > vol 118 n° 17 (27 April 2021) . - n° e2018863118[article]