Détail de l'auteur
Auteur Jiayue Zhuang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
[article]
Titre : Flexible Gabor-based superpixel-level unsupervised LDA for hyperspectral image classification Type de document : Article/Communication Auteurs : Sen Jia, Auteur ; Qingqing Zhao, Auteur ; Jiayue Zhuang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 10394 - 10409 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification non dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] filtre de Gabor
[Termes IGN] image hyperspectrale
[Termes IGN] ondelette de Gabor
[Termes IGN] segmentation d'image
[Termes IGN] superpixelRésumé : (auteur) Hyperspectral images encompass abundant information and provide unique characteristics for material classification. However, the labeling of training samples can be challenging in hyperspectral image classification. To address this problem, this study proposes a framework named flexible Gabor-based superpixel-level unsupervised linear discriminant analysis (FG- Su ULDA) to extract the most informative and discriminating features for classification. First, a number of 3-D flexible Gabor filters are rigorously designed using an asymmetric sinusoidal wave to sufficiently characterize the spatial–spectral structure in hyperspectral images. Then, an unsupervised linear discriminant analysis strategy guided by the entropy rate superpixel (ERS) segmentation algorithm, called Su ULDA, is skillfully introduced to reduce the extracted large amount of FG features. The Su ULDA method not only boosts the classification capability but also increases the peculiarity of features, with the aid of superpixel information. Finally, the achieved features are imported to the popular support vector machine classifier. The proposed FG- Su ULDA framework is applied to four real hyperspectral image data sets, and the experiments constantly prove that our FG- Su ULDA is superior to several state-of-the-art methods in both classification performance and computational efficiency, especially with scarce training samples. The codes of this work are available at http://jiasen.tech/papers/ for the sake of reproducibility. Numéro de notice : A2021-872 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3048994 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3048994 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99131
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10394 - 10409[article]