Détail de l'auteur
Auteur Chen Zheng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multigranularity multiclass-layer Markov random field model for semantic segmentation of remote sensing images / Chen Zheng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 12 (December 2021)
[article]
Titre : Multigranularity multiclass-layer Markov random field model for semantic segmentation of remote sensing images Type de document : Article/Communication Auteurs : Chen Zheng, Auteur ; Yun Zhang, Auteur ; Leiguang Wang, Auteur Année de publication : 2021 Article en page(s) : pp 10555 - 10574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] champ aléatoire de Markov
[Termes IGN] granularité d'image
[Termes IGN] segmentation sémantique
[Termes IGN] texture d'imageRésumé : (auteur) Semantic segmentation is one of the most important tasks in remote sensing. However, as spatial resolution increases, distinguishing the homogeneity of each land class and the heterogeneity between different land classes are challenging. The Markov random field model (MRF) is a widely used method for semantic segmentation due to its effective spatial context description. To improve segmentation accuracy, some MRF-based methods extract more image information by constructing the probability graph with pixel or object granularity units, and some other methods interpret the image from different semantic perspectives by building multilayer semantic classes. However, these MRF-based methods fail to capture the relationship between different granularity features extracted from the image and hierarchical semantic classes that need to be interpreted. In this article, a new MRF-based method is proposed to incorporate the multigranularity information and the multilayer semantic classes together for semantic segmentation of remote sensing images. The proposed method develops a framework that builds a hybrid probability graph on both pixel and object granularities and defines a multiclass-layer label field with hierarchical semantic over the hybrid probability graph. A generative alternating granularity inference is suggested to provide the result by iteratively passing and updating information between different granularities and hierarchical semantics. The proposed method is tested on texture images, different remote sensing images obtained by the SPOT5, Gaofen-2, GeoEye, and aerial sensors, and Pavia University hyperspectral image. Experiments demonstrate that the proposed method shows a better segmentation performance than other state-of-the-art methods. Numéro de notice : A2021-873 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3033293 Date de publication en ligne : 11/11/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3033293 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99132
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 12 (December 2021) . - pp 10555 - 10574[article]