Détail de l'auteur
Auteur Jincheng Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
OBIA-based extraction of artificial terrace damages in the Loess plateau of China from UAV photogrammetry / Xuan Fang in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
[article]
Titre : OBIA-based extraction of artificial terrace damages in the Loess plateau of China from UAV photogrammetry Type de document : Article/Communication Auteurs : Xuan Fang, Auteur ; Jincheng Li, Auteur ; Ying Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 805 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse d'image orientée objet
[Termes IGN] Chine
[Termes IGN] classification barycentrique
[Termes IGN] dommage matériel
[Termes IGN] données de terrain
[Termes IGN] érosion
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de surface
[Termes IGN] pente
[Termes IGN] photogrammétrie aérienne
[Termes IGN] segmentation d'image
[Termes IGN] surface cultivée
[Termes IGN] terrasseRésumé : (auteur) Terraces, which are typical artificial landforms found around world, are of great importance for agricultural production and soil and water conservation. However, due to the lack of maintenance, terrace damages often occur and affect the local flow process, which will influence soil erosion. Automatic high-accuracy mapping of terrace damages is the basis of monitoring and related studies. Researchers have achieved artificial terrace damage mapping mainly via manual field investigation, but an automatic method is still lacking. In this study, given the success of high-resolution unmanned aerial vehicle (UAV) photogrammetry and object-based image analysis (OBIA) for image processing tasks, an integrated framework based on OBIA and UAV photogrammetry is proposed for terrace damage mapping. The Pujiawa terrace in the Loess Plateau of China was selected as the study area. Firstly, the segmentation process was optimised by considering the spectral features and the terrains and corresponding textures obtained from high-resolution images and digital surface models. The feature selection was implemented via correlation analysis, and the optimised segmentation parameter was achieved using the estimation of scale parameter algorithm. Then, a supervised k-nearest neighbourhood classifier was used to identify the terrace damages in the segmented objects, and additional geometric features at the object level were considered for classification. The comparison with the ground truth, as delineated by the image and field survey, showed that proposed classification can be adequately performed. The F-measures of extraction on three terrace damages were 92.07% (terrace sinkhole), 81.95% (ridge sinkhole), and 85.17% (collapse), and the Kappa coefficient was 85.34%. Finally, the potential application and spatial distribution of the terrace damages in this study were determined. We believe that this work can provide a credible framework for mapping terrace damages in the Loess Plateau of China. Numéro de notice : A2021-882 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10120805 Date de publication en ligne : 27/11/2021 En ligne : https://doi.org/10.3390/ijgi10120805 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99178
in ISPRS International journal of geo-information > vol 10 n° 12 (December 2021) . - n° 805[article]