Détail de l'auteur
Auteur Xingyu Shen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Efficient occluded road extraction from high-resolution remote sensing imagery / Dejun Feng in Remote sensing, vol 13 n° 24 (December-2 2021)
[article]
Titre : Efficient occluded road extraction from high-resolution remote sensing imagery Type de document : Article/Communication Auteurs : Dejun Feng, Auteur ; Xingyu Shen, Auteur ; Yakun Xie, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4974 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de partie cachée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] image à haute résolution
[Termes IGN] reconstruction de routeRésumé : (auteur) Road extraction is important for road network renewal, intelligent transportation systems and smart cities. This paper proposes an effective method to improve road extraction accuracy and reconstruct the broken road lines caused by ground occlusion. Firstly, an attention mechanism-based convolution neural network is established to enhance feature extraction capability. By highlighting key areas and restraining interference features, the road extraction accuracy is improved. Secondly, for the common broken road problem in the extraction results, a heuristic method based on connected domain analysis is proposed to reconstruct the road. An experiment is carried out on a benchmark dataset to prove the effectiveness of this method, and the result is compared with that of several famous deep learning models including FCN8s, SegNet, U-Net and D-Linknet. The comparison shows that this model increases the IOU value and the F1 score by 3.35–12.8% and 2.41–9.8%, respectively. Additionally, the result proves the proposed method is effective at extracting roads from occluded areas. Numéro de notice : A2021-889 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13244974 Date de publication en ligne : 07/12/2021 En ligne : https://doi.org/10.3390/rs13244974 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99243
in Remote sensing > vol 13 n° 24 (December-2 2021) . - n° 4974[article]