Détail de l'auteur
Auteur filipo Maria Bianchi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Deep image translation with an affinity-based change prior for unsupervised multimodal change detection / Luigi Tommaso Luppino in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
[article]
Titre : Deep image translation with an affinity-based change prior for unsupervised multimodal change detection Type de document : Article/Communication Auteurs : Luigi Tommaso Luppino, Auteur ; Michael Kampffmeyer, Auteur ; filipo Maria Bianchi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4700422 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] architecture de réseau
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de changement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Image translation with convolutional neural networks has recently been used as an approach to multimodal change detection. Existing approaches train the networks by exploiting supervised information of the change areas, which, however, is not always available. A main challenge in the unsupervised problem setting is to avoid that change pixels affect the learning of the translation function. We propose two new network architectures trained with loss functions weighted by priors that reduce the impact of change pixels on the learning objective. The change prior is derived in an unsupervised fashion from relational pixel information captured by domain-specific affinity matrices. Specifically, we use the vertex degrees associated with an absolute affinity difference matrix and demonstrate their utility in combination with cycle consistency and adversarial training. The proposed neural networks are compared with the state-of-the-art algorithms. Experiments conducted on three real data sets show the effectiveness of our methodology. Numéro de notice : A2022-027 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3056196 Date de publication en ligne : 17/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3056196 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99263
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 4700422[article]