Détail de l'auteur
Auteur Xiaochen Lu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel unmixing-based hypersharpening method via convolutional neural network / Xiaochen Lu in IEEE Transactions on geoscience and remote sensing, vol 60 n° 1 (January 2022)
[article]
Titre : A novel unmixing-based hypersharpening method via convolutional neural network Type de document : Article/Communication Auteurs : Xiaochen Lu, Auteur ; Tong Li, Auteur ; Junping Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 5503614 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multibande
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] pouvoir de résolution spectraleRésumé : (auteur) Hypersharpening (namely, hyperspectral (HS) and multispectral (MS) image fusion) aims at enhancing the spatial resolution of HS image via an auxiliary higher resolution MS image. Currently, numerous hypersharpening methods are proposed successively, among which the unmixing-based approaches have been widely researched and demonstrated their effectiveness in the spectral fidelity aspect. However, existing unmixing-based fusion methods substantially employ mathematical techniques to solve the spectral mixture model, without taking full advantage of the collaborative spatial–spectral information that is usually helpful for abundance estimation improvement. To overcome this drawback, in this article, a novel unmixing-based HS and MS image fusion method, via a convolutional neural network (CNN), is proposed to promote spectral fidelity. The main idea of this work is to use CNN to fully explore the spatial information and the spectral information of both HS and MS images simultaneously, thereby enhancing the accuracy of estimating the abundance maps. Experiments on four simulated and real remote sensing data sets demonstrate that the proposed method is beneficial to the spectral fidelity of the fused images compared with some state-of-the-art algorithms. Meanwhile, it is also easy to implement and has a certain advantage in running time. Numéro de notice : A2022-028 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3063105 Date de publication en ligne : 22/03/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3063105 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99264
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 1 (January 2022) . - n° 5503614[article]