Détail de l'auteur
Auteur Kathrin Einzmann |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany / Kathrin Einzmann in Remote sensing of environment, vol 266 (December 2021)
[article]
Titre : Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany Type de document : Article/Communication Auteurs : Kathrin Einzmann, Auteur ; Clement Atzberger, Auteur ; Nicole Pinnel, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112676 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bavière (Allemagne)
[Termes IGN] changement climatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] dépérissement
[Termes IGN] détection de changement
[Termes IGN] houppier
[Termes IGN] image hyperspectrale
[Termes IGN] indice de végétation
[Termes IGN] insecte nuisible
[Termes IGN] phénomène climatique extrême
[Termes IGN] Picea abies
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelle
[Termes IGN] stress hydriqueRésumé : (auteur) Vitality loss of trees caused by extreme weather conditions, drought stress or insect infestations, are expected to increase with ongoing climate change. The detection of vitality loss at an early stage is thus of vital importance for forestry and forest management to minimize ecological and economical damage. Remote sensing instruments are able to detect changes over large areas down to the level of individual trees. The scope of our study is to investigate whether it is possible to detect stress-related spectral changes at an early stage using hyperspectral sensors. For this purpose, two Norway spruce (Picea abies) forest stands, both different in age and maintenance, were monitored in the field over two vegetation periods. In parallel, time series of airborne hyperspectral remote sensing data were acquired. For each stand 70 trees were artificially stressed (ring-barked) and 70 trees were used as control trees. The data collected in south-eastern Germany consists of measurements at multiple times and at different scales: (1) crown conditions were visually assessed in the field (2) needle reflectance spectra were acquired in the laboratory using a FieldSpec spectrometer, and (3) hyperspectral airborne data (HySpex) were flown at 0.5 m spatial resolution. We aimed for a simultaneous data acquisition at the three levels. This unique data set was investigated whether any feature can be discriminated to detect vitality loss in trees at an early stage. Several spectral transformations were applied to the needle and tree crown spectra, such as spectral derivatives, vegetation indices and angle indices. All features were examined for their separability (ring-barked vs. control trees) with the Random Forest (RF) classification algorithm. As result, the younger, well maintained forest stand only showed minor changes over the 2-year period, whereas changes in the older forest stand were observable both in the needle and in the hyperspectral tree crown spectra, respectively. These changes could even be detected before changes were visible by field observations. The tree spectral reactions to ring-barking were first noticeable 11 months after ring-barking and 6 weeks before they were visible by field inspection. The most discriminative features for separating the two groups were the reflectance spectra and the spectral derivatives, over the VIs or angle indices. The tree crown spectra of the two groups could be separated by the RF classifier with a 79% overall accuracy at the beginning of the second vegetation period and 1 month later with 92% overall accuracy with high kappa index. The results clearly demonstrate the great potential of hyperspectral remote sensing in detecting early vitality changes of stressed trees. Numéro de notice : A2021-921 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112676 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112676 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99274
in Remote sensing of environment > vol 266 (December 2021) . - n° 112676[article]