Détail de l'auteur
Auteur Seongyong Kim |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings / Hyunjung Kim in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)
[article]
Titre : Automatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings Type de document : Article/Communication Auteurs : Hyunjung Kim, Auteur ; Seongyong Kim, Auteur ; Kiyun Yu, Auteur Année de publication : 2021 Article en page(s) : n° 828 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] indoorGML
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction 3D du bâtiRésumé : (auteur) Automatic floor plan analysis has gained increased attention in recent research. However, numerous studies related to this area are mainly experiments conducted with a simplified floor plan dataset with low resolution and a small housing scale due to the suitability for a data-driven model. For practical use, it is necessary to focus more on large-scale complex buildings to utilize indoor structures, such as reconstructing multi-use buildings for indoor navigation. This study aimed to build a framework using CNN (Convolution Neural Networks) for analyzing a floor plan with various scales of complex buildings. By dividing a floor plan into a set of normalized patches, the framework enables the proposed CNN model to process varied scale or high-resolution inputs, which is a barrier for existing methods. The model detected building objects per patch and assembled them into one result by multiplying the corresponding translation matrix. Finally, the detected building objects were vectorized, considering their compatibility in 3D modeling. As a result, our framework exhibited similar performance in detection rate (87.77%) and recognition accuracy (85.53%) to that of existing studies, despite the complexity of the data used. Through our study, the practical aspects of automatic floor plan analysis can be expanded. Numéro de notice : A2021-926 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10120828 Date de publication en ligne : 10/12/2021 En ligne : https://doi.org/10.3390/ijgi10120828 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99289
in ISPRS International journal of geo-information > vol 10 n° 12 (December 2021) . - n° 828[article]