Détail de l'auteur
Auteur Xuesheng Zhao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images / Yiying Hua in Forests, vol 12 n° 12 (December 2021)
[article]
Titre : Multi-model estimation of forest canopy closure by using red edge bands based on Sentinel-2 images Type de document : Article/Communication Auteurs : Yiying Hua, Auteur ; Xuesheng Zhao, Auteur Année de publication : 2021 Article en page(s) : n° 1768 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] bande infrarouge
[Termes IGN] coefficient de corrélation
[Termes IGN] couvert forestier
[Termes IGN] détection de contours
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] modèle statistique
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] régression
[Termes IGN] surveillance de la végétationRésumé : (auteur) In remote sensing, red edge bands are important indicators for monitoring vegetation growth. To examine the application potential of red edge bands in forest canopy closure estimation, three types of commonly used models—empirical statistical models (multiple stepwise regression (MSR)), machine learning models (back propagation neural network (BPNN)) and physical models (Li–Strahler geometric-optical (Li–Strahler GO) models)—were constructed and verified based on Sentinel-2 data, DEM data and measured data. In addition, we set up a comparative experiment without red edge bands. The relative error (ER) values of the BPNN model, MSR model, and Li–Strahler GO model with red edge bands were 16.97%, 20.76% and 24.83%, respectively. The validation accuracy measures of these models were higher than those of comparison models. For comparative experiments, the ER values of the MSR, Li–Strahler GO and BPNN models were increased by 13.07%, 4% and 1.22%, respectively. The experimental results demonstrate that red edge bands can effectively improve the accuracy of forest canopy closure estimation models to varying degrees. These findings provide a reference for modeling and estimating forest canopy closure using red edge bands based on Sentinel-2 images. Numéro de notice : A2021-125 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f12121768 Date de publication en ligne : 14/12/2021 En ligne : https://doi.org/10.3390/f12121768 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99318
in Forests > vol 12 n° 12 (December 2021) . - n° 1768[article]