Détail de l'auteur
Auteur Sihang Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images / Sihang Zhang in Geo-spatial Information Science, vol 24 n° 4 (October 2021)
[article]
Titre : An internal-external optimized convolutional neural network for arbitrary orientated object detection from optical remote sensing images Type de document : Article/Communication Auteurs : Sihang Zhang, Auteur ; Zhenfeng Shao, Auteur ; Xiao Huang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 654 - 665 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] image optique
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Due to the bird’s eye view of remote sensing sensors, the orientational information of an object is a key factor that has to be considered in object detection. To obtain rotating bounding boxes, existing studies either rely on rotated anchoring schemes or adding complex rotating ROI transfer layers, leading to increased computational demand and reduced detection speeds. In this study, we propose a novel internal-external optimized convolutional neural network for arbitrary orientated object detection in optical remote sensing images. For the internal optimization, we designed an anchor-based single-shot head detector that adopts the concept of coarse-to-fine detection for two-stage object detection networks. The refined rotating anchors are generated from the coarse detection head module and fed into the refining detection head module with a link of an embedded deformable convolutional layer. For the external optimization, we propose an IOU balanced loss that addresses the regression challenges related to arbitrary orientated bounding boxes. Experimental results on the DOTA and HRSC2016 benchmark datasets show that our proposed method outperforms selected methods. Numéro de notice : A2021-129 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2021.1972772 Date de publication en ligne : 27/09/2021 En ligne : https://doi.org/10.1080/10095020.2021.1972772 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99355
in Geo-spatial Information Science > vol 24 n° 4 (October 2021) . - pp 654 - 665[article]