Détail de l'auteur
Auteur Min Ren |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A prediction model for surface deformation caused by underground mining based on spatio-temporal associations / Min Ren in Geomatics, Natural Hazards and Risk, vol 13 (2022)
[article]
Titre : A prediction model for surface deformation caused by underground mining based on spatio-temporal associations Type de document : Article/Communication Auteurs : Min Ren, Auteur ; Guanwen Cheng, Auteur ; Wancheng Zhu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 94 - 122 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse des risques
[Termes IGN] analyse spatio-temporelle
[Termes IGN] Chine
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] déformation de la croute terrestre
[Termes IGN] déformation de surface
[Termes IGN] mine de fer
[Termes IGN] modèle de simulation
[Termes IGN] règle d'associationMots-clés libres : spatio-temporal association rule mining (STARM) Résumé : (auteur) Accurate predictions of the surface deformation caused by underground mining are crucial for the safe development of underground resources. Although surface deformation has been predicted by artificial intelligence (AI) methods, most AI models are established based on the relationships between surface deformation and influential factors. The lack of consideration of the deformation state transition often leads to errors in the prediction results of catastrophic deformation by conventional AI methods. In this respect, this study introduces a surface deformation prediction model based on spatio-temporal association rule mining (STARM). Surface deformation is classified as excessive deformation zone (EDZ) and hysteretic deformation zone (HDZ), representing different surface deformation stage or state. The spatio-temporal association rules between the monitored EDZ and HDZ data are then mined. A surface deformation prediction model is established according to the spatio-temporal relationship between monitored EDZ and HDZ data. The proposed model is verified based on a practical case study of the Chengchao Iron Mine in China. The data collection of the influential factors is not requisite for the proposed model. It can achieve accurate prediction of the catastrophic deformation that was characterized by deformation state transition. Numéro de notice : A2022-035 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/POSITIONNEMENT Nature : Article DOI : 10.1080/19475705.2021.2015460 Date de publication en ligne : 21/12/2021 En ligne : https://doi.org/10.1080/19475705.2021.2015460 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99359
in Geomatics, Natural Hazards and Risk > vol 13 (2022) . - pp 94 - 122[article]