Détail de l'auteur
Auteur Zhao Dongsheng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde / Li Wang in Space weather, vol 19 n° 3 (March 2021)
[article]
Titre : Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and Digisonde Type de document : Article/Communication Auteurs : Li Wang, Auteur ; Zhao Dongsheng ; Changyong He , Auteur ; et al., Auteur Année de publication : 2021 Projets : 3-projet - voir note / Article en page(s) : n° e2020SW002605 Note générale : bibliographie
The authors greatly appreciate the financial support from the National Natural Science Foundations of China (Grant No. 41730109, 41804013), the Natural Science Foundation of Jiangsu Province (Grant No. BK20200646, BK20200664), the Fundamental Re-search Funds for the Central Universi-ties (Grant No. 2020QN31, 2020QN30), the Project funded by China Postdoc-toral Science Foundation (Grant No. 2020M671645), the Open Fund of Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution (Grant No. KLSPWSEP-A06), A Project Funded by the Priority Academic Pro-gram Development of Jiangsu Higher Education Institutions (Surveying and Mapping).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] image Formosat/COSMIC
[Termes IGN] modèle ionosphérique
[Termes IGN] Perceptron multicouche
[Termes IGN] réseau neuronal artificiel
[Termes IGN] teneur totale en électrons
[Termes IGN] variation saisonnièreRésumé : (auteur) The ionosphere plays an important role in satellite navigation, radio communication, and space weather prediction. However, it is still a challenging mission to develop a model with high predictability that captures the horizontal-vertical features of ionospheric electrodynamics. In this study, multiple observations during 2005–2019 from space-borne global navigation satellite system (GNSS) radio occultation (RO) systems (COSMIC and FY-3C) and the Digisonde Global Ionosphere Radio Observatory are utilized to develop a completely global ionospheric three-dimensional electron density model based on an artificial neural network, namely ANN-TDD. The correlation coefficients of the predicted profiles all exceed 0.96 for the training, validation and test datasets, and the minimum root-mean-square error of the predicted residuals is 7.8 × 104 el/cm3. Under quiet space weather, the predicted accuracy of the ANN-TDD is 30%–60% higher than the IRI-2016 at the Millstone Hill and Jicamarca incoherent scatter radars. However, the ANN-TDD is less capable of predicting ionospheric dynamic evolution under severe geomagnetic storms compared to the IRI-2016 with the STORM option activated. Additionally, the ANN-TDD successfully reproduces the large-scale horizontal-vertical ionospheric electrodynamic features, including seasonal variation and hemispheric asymmetries. These features agree well with the structure revealed by the RO profiles derived from the FORMOSAT/COSMIC-2 mission. Furthermore, the ANN-TDD successfully captures the prominent regional ionospheric patterns, including the equatorial ionization anomaly, Weddell Sea anomaly and mid-latitude summer nighttime anomaly. The new model is expected to play an important role in the application of GNSS navigation and in the explanation of the physical mechanisms involved. Numéro de notice : A2021-504 Affiliation des auteurs : ENSG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2020SW002605 Date de publication en ligne : 10/03/2021 En ligne : https://doi.org/10.1029/2020SW002605 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99369
in Space weather > vol 19 n° 3 (March 2021) . - n° e2020SW002605[article]