Détail de l'auteur
Auteur Jean-François Bercher |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures : EUROSTRUCT 2021. An automated machine learning-based approach for structural novelty detection based on SHM / Nicolas Manzini (2022)
Titre de série : Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures : EUROSTRUCT 2021 Titre : An automated machine learning-based approach for structural novelty detection based on SHM Type de document : Article/Communication Auteurs : Nicolas Manzini, Auteur ; Ndeye Mar, Auteur ; Franziska Schmidt, Auteur ; Jean-François Bercher, Auteur ; André Orcesi, Auteur ; Pierre Marchand, Auteur ; Julien Gazeaux , Auteur ; Christian Thom , Auteur Editeur : Springer Nature Année de publication : 2022 Collection : Lecture Notes in Civil Engineering num. 200 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : EUROSTRUCT 2021, 1st Conference of the European Association on Quality Control of Bridges and Structures 29/08/2021 01/09/2021 Padoue Italie Proceedings Springer Importance : pp 1180 - 1189 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] détection d'anomalie
[Termes IGN] ouvrage d'art
[Termes IGN] pont
[Termes IGN] régression multiple
[Termes IGN] réseau de capteurs
[Termes IGN] résidu
[Termes IGN] surveillance d'ouvrageRésumé : (auteur) One major goal of structural health monitoring (SHM) is to detect, and possibly locate, quantify or predict damage on structures. Without detailed knowledge of structural mechanical behavior, data analysis is a complex task and operational monitoring is often limited to the use of more or less arbitrary thresholds. Data-driven techniques, which rely on a statistical analysis of data, have encountered a growing interest over the past two decades. In parallel, SHM is now increasingly considered for several types of structures with the development of low-cost sensors and IoT. In this context, this paper proposes an approach based on multiple automated machine learning-based models for novelty detection and location in monitoring data. This study focuses on the monitoring of large structures with multiple sensors. For each sensor, multiple regression models (based on neural networks) are generated using the same training set, with various input data: internal temperature, environmental conditions, or data from other sensors deployed on the structure. Anomalies are then identified in the dataset based on residuals between model outputs and in situ data. For a given sensor, residuals of all models are then compiled to produce an anomaly indicator. This paper presents some of the results obtained on data acquired from the monitoring of a large concrete bridge. Some anomalies are simulated and added to the dataset to demonstrate the detection performance of the proposed approach. Numéro de notice : C2021-086 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1007/978-3-030-91877-4_134 Date de publication en ligne : 12/12/2021 En ligne : https://doi.org/10.1007/978-3-030-91877-4_134 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99378