Détail de l'auteur
Auteur Jonathan Fabrizio |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
BuyTheDips : PathLoss for improved topology-preserving deep learning-based image segmentation / Minh On Vu Ngoc (2022)
Titre : BuyTheDips : PathLoss for improved topology-preserving deep learning-based image segmentation Type de document : Article/Communication Auteurs : Minh On Vu Ngoc, Auteur ; Yizi Chen , Auteur ; Nicolas Boutry, Auteur ; Jonathan Fabrizio, Auteur ; Clément Mallet , Auteur Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : SODUCO / Perret, Julien Importance : 13 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] fonction de perte
[Termes IGN] image numérique
[Termes IGN] proximité sémantique
[Termes IGN] segmentation d'imageRésumé : (auteur) Capturing the global topology of an image is essential for proposing an accurate segmentation of its domain. However, most of existing segmentation methods do not preserve the initial topology of the given input, which is detrimental for numerous downstream object-based tasks. This is all the more true for deep learning models which most work at local scales. In this paper, we propose a new topology-preserving deep image segmentation method which relies on a new leakage loss: the Pathloss. Our method is an extension of the BALoss [1], in which we want to improve the leakage detection for better recovering the closeness property of the image segmentation. This loss allows us to correctly localize and fix the critical points (a leakage in the boundaries) that could occur in the predictions, and is based on a shortest-path search algorithm. This way, loss minimization enforces connectivity only where it is necessary and finally provides a good localization of the boundaries of the objects in the image. Moreover, according to our research, our Pathloss learns to preserve stronger elongated structure compared to methods without using topology-preserving loss. Training with our topological loss function, our method outperforms state-of-the-art topology-aware methods on two representative datasets of different natures: Electron Microscopy and Historical Map. Numéro de notice : P2022-005 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2207.11446 En ligne : https://doi.org/10.48550/arXiv.2207.11446 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101338
Titre : Introducing the boundary-aware loss for deep image segmentation Type de document : Article/Communication Auteurs : Minh On Vu Ngoc, Auteur ; Yizi Chen , Auteur ; Nicolas Boutry, Auteur ; Joseph Chazalon, Auteur ; Edwin Carlinet, Auteur ; Jonathan Fabrizio, Auteur ; Clément Mallet , Auteur ; Thierry Géraud, Auteur Editeur : The British Machine Vision Association Press (BMVA) Année de publication : 2021 Projets : SODUCO / Perret, Julien Conférence : BMVC 2021, 32nd British Machine Vision Conference 22/11/2021 25/11/2021 online Royaume-Uni OA Proceedings Importance : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] segmentation d'imageRésumé : (auteur) Most contemporary supervised image segmentation methods do not preserve the initial topology of the given input (like the closeness of the contours). One can generally remark that edge points have been inserted or removed when the binary prediction and the ground truth are compared. This can be critical when accurate localization of multiple interconnected objects is required. In this paper, we present a new loss function, called, Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut algorithm. It is able to locate what we call the leakage pixels and to encode the boundary information coming from the given ground truth. Thanks to this adapted loss, we are able to significantly refine the quality of the predicted boundaries during the learning procedure. Furthermore, our loss function is differentiable and can be applied to any kind of neural network used in image processing. We apply this loss function on the standard U-Net and DC U-Net on Electron Microscopy datasets. They are well-known to be challenging due to their high noise level and to the close or even connected objects covering the image space. Our segmentation performance, in terms of Variation of Information (VOI) and Adapted Rank Index (ARI), are very promising and lead to 15% better scores of VOI and 5% better scores of ARI than the state-of-the-art. The code of boundary-awareness loss is freely available at https://github.com/onvungocminh/MBD_BAL Numéro de notice : C2021-054 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : sans En ligne : https://www.bmvc2021-virtualconference.com/assets/papers/1546.pdf Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99411