Détail de l'auteur
Auteur Jesus Torralba |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of mediterranean shrub species from UAV point clouds / Juan Pedro Carbonell-Rivera in Remote sensing, vol 14 n° 1 (January-1 2022)
[article]
Titre : Classification of mediterranean shrub species from UAV point clouds Type de document : Article/Communication Auteurs : Juan Pedro Carbonell-Rivera, Auteur ; Jesus Torralba, Auteur ; Javier Estornell, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 199 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] arbuste
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] Espagne
[Termes IGN] Extreme Gradient Machine
[Termes IGN] forêt méditerranéenne
[Termes IGN] image captée par drone
[Termes IGN] incendie de forêt
[Termes IGN] indice de végétation
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de terrain
[Termes IGN] parc naturel
[Termes IGN] photogrammétrie aérienne
[Termes IGN] semis de pointsRésumé : (auteur) Modelling fire behaviour in forest fires is based on meteorological, topographical, and vegetation data, including species’ type. To accurately parameterise these models, an inventory of the area of analysis with the maximum spatial and temporal resolution is required. This study investigated the use of UAV-based digital aerial photogrammetry (UAV-DAP) point clouds to classify tree and shrub species in Mediterranean forests, and this information is key for the correct generation of wildfire models. In July 2020, two test sites located in the Natural Park of Sierra Calderona (eastern Spain) were analysed, registering 1036 vegetation individuals as reference data, corresponding to 11 shrub and one tree species. Meanwhile, photogrammetric flights were carried out over the test sites, using a UAV DJI Inspire 2 equipped with a Micasense RedEdge multispectral camera. Geometrical, spectral, and neighbour-based features were obtained from the resulting point cloud generated. Using these features, points belonging to tree and shrub species were classified using several machine learning methods, i.e., Decision Trees, Extra Trees, Gradient Boosting, Random Forest, and MultiLayer Perceptron. The best results were obtained using Gradient Boosting, with a mean cross-validation accuracy of 81.7% and 91.5% for test sites 1 and 2, respectively. Once the best classifier was selected, classified points were clustered based on their geometry and tested with evaluation data, and overall accuracies of 81.9% and 96.4% were obtained for test sites 1 and 2, respectively. Results showed that the use of UAV-DAP allows the classification of Mediterranean tree and shrub species. This technique opens a wide range of possibilities, including the identification of species as a first step for further extraction of structure and fuel variables as input for wildfire behaviour models. Numéro de notice : A2022-057 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs14010199 En ligne : https://doi.org/10.3390/rs14010199 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99462
in Remote sensing > vol 14 n° 1 (January-1 2022) . - n° 199[article]