Détail de l'auteur
Auteur Fardin Moradi |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) / Vahid Nasiri in Arabian Journal of Geosciences, vol 15 n° 24 (December 2022)
[article]
Titre : Integration of radar and optical Sentinel images for land use mapping in a complex landscape (case study: Arasbaran Protected Area) Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Arnaud Le Bris , Auteur ; Ali Asghar Darvishsefat, Auteur ; Fardin Moradi, Auteur Année de publication : 2022 Projets : 1-Pas de projet / Article en page(s) : n° 1759 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] aire protégée
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SARRésumé : (auteur) Considering the importance of accurate and up-to-date land use/cover (LULC) maps and in a situation of fast LULC changes, an accurate mapping of complex landscapes requires real-time high-resolution remote sensed data and powerful classification algorithms. The new ESA Copernicus satellites Sentinel-1 (S-1) and Sentinel-2 (S-2) have contributed to the effective monitoring of the Earth’s surface. This paper aims at assessing the potential of mono-temporal S-1 and S-2 satellite images and three common classification algorithms including maximum likelihood (ML), support vector machine (SVM), and random forest (RF) for LULC classification. The research methodology consists of a sequence of tasks including data collection and preprocessing, the extraction of texture and spectral features, the definition of several feature set configurations, classification, and accuracy assessment. Based on the results, using S-1 data alone leads to quite poor results, even though dual polarimetric C-band and texture features increased the classification accuracy. The S-2 data outperformed the S-1 data in terms of overall and class level accuracies. A combined use of S-1 and S-2 satellite images involving extracted features from both sources led to the best result for identifying all classes. This emphasizes the critical importance of using multi-modal datasets and different features in the LULC classification. Among classification algorithms, the SVM led to the highest accuracies irrespective of the dataset. To sum it up, according to the applied methodology and results, S-1 and S-2 data can provide optimal and up-to-date information for LULC mapping using non-parametric classifiers as SVM or RF. Numéro de notice : A2022-699 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s12517-022-11035-z Date de publication en ligne : 07/12/2022 En ligne : https://doi.org/10.1007/s12517-022-11035-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102253
in Arabian Journal of Geosciences > vol 15 n° 24 (December 2022) . - n° 1759[article]GCPs-free photogrammetry for estimating tree height and crown diameter in Arizona cypress plantation using UAV-mounted GNSS RTK / Morteza Pourreza in Forests, vol 13 n° 11 (November 2022)
[article]
Titre : GCPs-free photogrammetry for estimating tree height and crown diameter in Arizona cypress plantation using UAV-mounted GNSS RTK Type de document : Article/Communication Auteurs : Morteza Pourreza, Auteur ; Fardin Moradi, Auteur ; Mohammad Khosravi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1905 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] cupressus (genre)
[Termes IGN] diamètre des arbres
[Termes IGN] hauteur de vol
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] Iran
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] structure-from-motionRésumé : (auteur) One of the main challenges of using unmanned aerial vehicles (UAVs) in forest data acquisition is the implementation of Ground Control Points (GCPs) as a mandatory step, which is sometimes impossible for inaccessible areas or within canopy closures. This study aimed to test the accuracy of a UAV-mounted GNSS RTK (real-time kinematic) system for calculating tree height and crown height without any GCPs. The study was conducted on a Cupressus arizonica (Greene., Arizona cypress) plantation on the Razi University Campus in Kermanshah, Iran. Arizona cypress is commonly planted as an ornamental tree. As it can tolerate harsh conditions, this species is highly appropriate for afforestation and reforestation projects. A total of 107 trees were subjected to field-measured dendrometric measurements (height and crown diameter). UAV data acquisition was performed at three altitudes of 25, 50, and 100 m using a local network RTK system (NRTK). The crown height model (CHM), derived from a digital surface model (DSM), was used to estimate tree height, and an inverse watershed segmentation (IWS) algorithm was used to estimate crown diameter. The results indicated that the means of tree height obtained from field measurements and UAV estimation were not significantly different, except for the mean values calculated at 100 m flight altitude. Additionally, the means of crown diameter reported from field measurements and UAV estimation at all flight altitudes were not statistically different. Root mean square error (RMSE Numéro de notice : A2022-838 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13111905 Date de publication en ligne : 12/11/2022 En ligne : https://doi.org/10.3390/f13111905 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102039
in Forests > vol 13 n° 11 (November 2022) . - n° 1905[article]The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests / Vahid Nasiri in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
[article]
Titre : The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Seyed Mohammad Moein Sadeghi, Auteur ; Fardin Moradi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] couvert forestier
[Termes IGN] forêt méditerranéenne
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Iran
[Termes IGN] placette d'échantillonnage
[Termes IGN] Quercus (genre)Résumé : (auteur) Forest canopy cover (FCC) is one of the most important forest inventory parameters and plays a critical role in evaluating forest functions. This study examines the potential of integrating Sentinel-1 (S-1) and Sentinel-2 (S-2) data to map FCC in the heterogeneous Mediterranean oak forests of western Iran in different data densities (one-year datasets vs. three-year datasets). This study used very high-resolution satellite images from Google Earth, gridded points, and field inventory plots to generate a reference dataset. Based on it, four FCC classes were defined, namely non-forest, sparse forest (FCC = 1–30%), medium-density forest (FCC = 31–60%), and dense forest (FCC > 60%). In this study, three machine learning (ML) models, including Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART), were used in the Google Earth Engine and their performance was compared for classification. Results showed that the SVM produced the highest accuracy on FCC mapping. The three-year time series increased the ability of all ML models to classify FCC classes, in particular the sparse forest class, which was not distinguished well by the one-year dataset. Class-level accuracy assessment results showed a remarkable increase in F-1 scores for sparse forest classification by integrating S-1 and S-2 (10.4% to 18.2% increased for the CART and SVM ML models, respectively). In conclusion, the synergetic use of S-1 and S-2 spectral temporal metrics improved the classification accuracy compared to that obtained using only S-2. The study relied on open data and freely available tools and can be integrated into national monitoring systems of FCC in Mediterranean oak forests of Iran and neighboring countries with similar forest attributes. Numéro de notice : A2022-649 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080423 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.3390/ijgi11080423 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101465
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 423[article]Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data / Fardin Moradi in Annals of forest research, vol 65 n° 1 (January - June 2022)
[article]
Titre : Above-ground biomass estimation in a Mediterranean sparse coppice oak forest using Sentinel-2 data Type de document : Article/Communication Auteurs : Fardin Moradi, Auteur ; Seyed Mohammad Moein Sadeghi, Auteur ; Hadi Beygi Heidarlou, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 182 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] allométrie
[Termes IGN] biomasse aérienne
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] forêt méditerranéenne
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] Iran
[Termes IGN] Quercus brantii
[Termes IGN] taillisRésumé : (auteur) Implementing a scheduled and reliable estimation of forest characteristics is important for the sustainable management of forests. This study aimed at evaluating the capability of Sentinel-2 satellite data to estimate above-ground biomass (AGB) in coppice forests of Persian oak (Quercus brantii var. persica) located in Western Iran. To estimate the AGB, field data collection was implemented in 80 square plots (40×40 m, area of 1600 m2). Two diameters of the crown were measured and used to calculate the AGB of each tree based on allometric equations. Then, the performance of satellite data in estimating the AGB was evaluated for the area of study using the field-based AGB (dependent variable) as well as the spectral band values, spectrally-derived vegetation indices (independent variables) and four machine learning (ML) algorithms: MultiLayer Perceptron Artificial Neural Network (MLPNN), k-Nearest Neighbor (kNN), Random Forest (RF), and Support Vector Regression (SVR). A five-fold cross-validation was used to verify the effectiveness of models. Examination of the Pearson’s correlation coefficient between AGB and the extracted values showed that IPVI and NDVI vegetation indices had the highest correlation with AGB (r = 0.897). The results indicated that the MLPNN algorithm was the best ML option (RMSE = 1.71 t ha-1; MAE = 1.37 t ha-1; relative RMSE = 24.75%; R2 = 0.87) in estimating the AGB, providing new insights on the capability of remotely sensed-based AGB modeling of sparse Mediterranean forest ecosystems in an area with limited number of field sample plots. Numéro de notice : A2022-876 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.15287/afr.2022.2390 Date de publication en ligne : 29/06/2022 En ligne : https://doi.org/10.15287/afr.2022.2390 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102180
in Annals of forest research > vol 65 n° 1 (January - June 2022) . - pp 165 - 182[article]Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data / Fardin Moradi in Forests, vol 13 n° 1 (January 2022)
[article]
Titre : Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data Type de document : Article/Communication Auteurs : Fardin Moradi, Auteur ; Ali Asghar Darvishsefat, Auteur ; Manizheh Rajab Pourrahmati, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Carpinus betulus
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] image Sentinel-MSI
[Termes IGN] Iran
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielNuméro de notice : A2022-080 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13010104 Date de publication en ligne : 12/01/2022 En ligne : https://doi.org/10.3390/f13010104 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99472
in Forests > vol 13 n° 1 (January 2022) . - n° 104[article]