Détail de l'auteur
Auteur Sangwon Park |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea / Yang Xu in Computers, Environment and Urban Systems, vol 92 (March 2022)
[article]
Titre : Understanding the movement predictability of international travelers using a nationwide mobile phone dataset collected in South Korea Type de document : Article/Communication Auteurs : Yang Xu, Auteur ; Dan Zou, Auteur ; Sangwon Park, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] chaîne de Markov
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] Corée du sud
[Termes IGN] durée de trajet
[Termes IGN] mobilité humaine
[Termes IGN] modèle de simulation
[Termes IGN] prévision à court terme
[Termes IGN] téléphone intelligent
[Termes IGN] téléphonie mobile
[Termes IGN] tourisme
[Termes IGN] voyageRésumé : (auteur) The abilities to predict tourist movements are critical to many urban applications, such as travel recommendations, targeted advertising, and infrastructure planning. Despite its importance, our understanding on the movement predictability of urban tourists and visitors is still limited, partially due to difficulties in accessing large scale mobility observations. In this study, we aim to bridge this gap by analyzing a nationwide mobile phone dataset. The dataset captures movement traces of a large number of international travelers who visited South Korea in 2018. By introducing two prediction models, one being Markov chain and the other with a recurrent neural network architecture, we assess how well travelers’ movements can be predicted under different model settings, and examine how predictability relates to travelers’ length of stay and activeness in travel patterns. Since travelers’ destination choices are quite diverse in South Korea, this enables us to further investigate the geographic variation of the models’ performance. Results show that the Markov chain model achieves an overall accuracy between 33.4% (@Acc1 metric) and 64.2% (@Acc5 metric), compared to 41.9% (@Acc1) and 67.7% (@Acc5) for the recurrent neural network model. The prediction capabilities of both models are largely unequal across individuals, with active travelers being more predictable in general. There is a notable geographic variation in the models’ performance, meaning that travelers’ movements are more predictable in some cities, but less in others. We believe this study represents a new effort in portraying the movement predictability of urban tourists and visitors. The analytical framework can be applied to assist tourism planning and service deployment in cities. Numéro de notice : A2022-085 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101753 Date de publication en ligne : 06/01/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101753 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99490
in Computers, Environment and Urban Systems > vol 92 (March 2022)[article]